首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王军  张阿方 《化学进展》2015,27(10):1413-1424
超分子螺旋聚合物结合了超分子聚合物制备方法简便、结构及性能可调控等优势,相比于人工合成的共价型螺旋聚合物更接近自然界螺旋生物大分子,因而在手性探针、不对称催化以及手性识别和分离等领域具有广泛的应用前景。结合多肽的手性优势、丰富的二次有序构象及其出色的自组装行为,以多肽作为结构基元经超分子组装制备具有螺旋构象的聚合物,不仅丰富了手性/螺旋聚合物的制备途径,同时为多肽材料的功能化应用提供新的广阔前景。本文综述了多肽基元之间经超分子作用诱导形成的超分子螺旋聚合物,总结了双亲性多肽以及多肽拓扑结构对超分子组装过程的影响及其对形成螺旋结构的控制,重点归纳了由多肽构筑的光、温度、pH、金属离子和酶等不同类型智能响应性的超分子螺旋聚合物。  相似文献   

2.
Bisporphyrin cleft molecule 1 Zn possessing a guest moiety assembled to form supramolecular polymers through host–guest interactions. Bispyridine cross‐linkers created interchain connections among the supramolecular polymers to form networked polymers in solution. Solution viscometry confirmed that the cross‐linked supramolecular polymers were highly entangled. Frequency‐dependent linear viscoelastic spectroscopy revealed that the supramolecular polymers generated well‐entangled solutions with associating and networking polymers, whereas the solid‐like aggregates moved individually without breaking and reforming structures below the transition temperature of 9.6 °C. Morphological transition of the supramolecular polymers was evidenced by AFM images; the non‐cross‐linked polymer resulted in wide‐spread thin networks, while the cross‐linked networks produced thicker worm‐like nanostructures. The supramolecular networks gelled in 1,1,2,2‐tetrachloroethane, and an elastic free‐standing film was fabricated with a Young’s modulus of 1 GPa.  相似文献   

3.
基于氢键作用结合的超分子聚合物   总被引:5,自引:1,他引:4  
王毓江  唐黎明 《化学进展》2006,18(2):308-316
非共价键结合的超分子聚合物由于其特殊的结构及性能引起了广泛的关注。本文在介绍超分子化学、氢键及超分子聚合物的基础上,主要综述了以氢键为结合力的多重氢键作用、羧基(D)与吡啶基(A)作用以及氢键与其它非共价键协同作用形成的超分子聚合物体系,并对超分子聚合物的研究现状及前景进行了评述。  相似文献   

4.
基于氢键作用结合的超分子聚合物   总被引:1,自引:0,他引:1  
非共价键结合的超分子聚合物由于其特殊的结构及性能引起了广泛的关注。本文在介绍超分子化学、氢键及超分子聚合物的基础上,主要综述了以氢键为结合力的多重氢键作用、羧基(D)与吡啶基(A)作用以及氢键与其它非共价键协同作用形成的超分子聚合物体系,并对超分子聚合物的研究现状及前景进行了评述。  相似文献   

5.
材料的自修复功能对于材料应用具有重要的意义,如键组装/解组装常数、键的方向和链的弛豫时间等因素会影响自修复效率。根据提供修复功能的物质构成形式,可以分为外援型自修复材料和本征型自修复材料,其中本征型自修复材料是当前的热点方向,在本征型自修复材料中,超分子自修复材料以其独特的可逆性组装,以及在快速、可逆、多重响应方面的优势而成为研究重点。本文重点阐述了基于不同结合效应的超分子自修复聚合物的研究进展,并对今后的研究方向作了展望,认为材料的耐环境性能能否达标是未来能否获得应用的关键因素之一。  相似文献   

6.
Application of new strategies for supramolecular self‐assembly can significantly impact the properties and/or functions of supramolecular polymers. To realize a facial strategy for the development of solvent‐free supramolecular polymers in bulk, “deep eutectic solvents” were employed. Cyclodextrins and natural acids were used to prepare deep eutectic supramolecular polymers ( DESP s). Deep eutectic solvents have special characteristics that endow DESP s with unique macroscopic properties and excellent processability. DESP s exhibit supramolecular adhesion and temperature‐dependent behavior originating from the combined effects of deep eutectic solvents and supramolecular polymerization. Because DESP s are solvent‐free and display interesting macroscopic properties, they have potential as new adaptive materials.  相似文献   

7.
氢键识别超分子聚合物的新进展   总被引:1,自引:0,他引:1  
王宇  唐黎明 《化学进展》2007,19(5):769-778
近年来,由于氢键作用对聚合物的热力学性质、微观自组装、结晶及液晶行为的重要影响,氢键识别在超分子聚合物的分子设计与结构控制方面的应用受到广泛关注。本文系统介绍了氢键识别体系的类型与性质,以及分子结构、分子内氢键对氢键识别强度的影响,讨论了羧酸与吡啶间氢键识别体系、与核苷相关的氢键识别体系以及四重氢键识别体系在超分子聚合物中的最新应用,主要介绍了氢键识别超分子聚合物的合成、结构、性质及功能。  相似文献   

8.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

9.
New synthetic methodologies towards hydrogen bonded supramolecular polymers are described. Focus is directed on synthetic work towards telechelics with hydrogen bonds either as side chain moieties or as endgroups. Physical ordering effects related to polymers and particles are discussed citing own and related work in ∼60 references.  相似文献   

10.
Charging forward : Ionic interactions presented in a multivalent fashion in small‐molecule ionic liquids lead to functional polymer‐like materials (see picture) that are consistent with the formation of a supramolecular ionic network. For example, the ionic material formed from a dication consisting of two covalently linked tetraalkyl phosphonium moieties and a porphyrin tetracarboxylate has a viscosity of 106 Pa s at 25 °C.

  相似文献   


11.
A new family of supramolecular ionic polymers is synthesized by a simple method using (di‐/tri‐)carboxylic acids and (di‐/tri‐)alkyl amines. These polymers are formed by carboxylate and ammonium molecules that are weakly bonded together by a combination of ionic and hydrogen bonds, becoming solid at room temperature. The supramolecular ionic polymers show a sharp rheological transition from a viscoelastic gel to a viscous liquid between 30 and 80 °C. This sharp viscosity decrease is responsible for an unprecedented jump in ionic conductivity of four orders of magnitude in that temperature range. As a potential application, this chemistry can be used to develop polymeric materials with self‐healing properties, since it combines properties from supramolecular polymers and ionomers into the same material.  相似文献   

12.
A series of mixed‐ligand‐based CdII/CoII coordination polymers (CPs) that were derived from two bis(pyridyl)–bis(amide) ligands, 4,4′‐oxybis(N‐(pyridin‐3‐yl)benzamide) ( LP ) and 4,4′‐oxybis(N‐(pyridin‐4‐yl)benzamide) ( LP1 ), and a variety of dicarboxylates isophthalates, terephthalates, 1,2‐carboxytranscinamates, and 1,3‐ and 1,4‐phenylene dicarboxylates were synthesized based on a rationale that they would occlude solvate guests inside their crystal lattice, thereby rendering these CPs suitable as metallogelators. The CPs were characterized by using single‐crystal X‐ray diffraction, elemental analysis, powder X‐ray diffraction (PXRD), FTIR spectroscopy, and thermogravimetric analysis (TGA). Structural analyses revealed that the majority of the CPs were lattice‐occluded molecular solids, which provided us with an opportunity to study their gelation behavior. We observed that, out of eight CPs that were tested, seven were able to produce metallogels. A thorough study of the rheological behavior of the metallogels was performed and CPG1 , CPG2 , CPG4 , and CPG5 were found to exhibit rheoreversible behavior, which was further confirmed by rheological experiments. Interestingly, ligand LP was found to form an aqueous gel, which was exploited to produce silver nanoparticles.  相似文献   

13.
Frequently encountered in crystalline materials, aromatic embraces (AEs) are formed when arylated molecules interact through multiple concerted aromatic interactions. AEs are a robust motif that is suitable for the preparation of amorphous bulk supramolecular polymers (BSPs). Crystal engineering revealed that the polymorphic compound (PPh3)(Cp)Fe(CO){CO(CH2)5CH3} (Cp=cyclopentadienyl), known as FpC6, assembled into various chain structures through several AE motifs. Upon melting, FpC6 always adopted the same AE motif, which extended into the corresponding embracing “ladder” chains. The resultant BSP displayed typical polymer behaviour, including the presence of a glass transition and viscoelasticity, which allowed the effect of thermal history on the polymerisation behaviour to be explored. The ladder chains formed by the AE remain assembled at temperatures of up to 130 °C and were able to effectively suppress crystallisation during cooling. The ability of the AE to form chains at high temperatures and suppress crystallisation is a new opportunity to advance the field of BSPs and supramolecular chemistry.  相似文献   

14.
Photoinduced charge separation in supramolecular aggregates of π-conjugated molecules is a fundamental photophysical process and a key criterion for the development of advanced organic electronics materials. Herein, the self-assembly of low-band-gap chromophores into helical one-dimensional aggregates, due to intermolecular hydrogen bonding, is reported. Chromophores confined in these supramolecular polymers show strong excitonic coupling interactions and give rise to charge-separated states with unusually long lifetimes of several hours and charge densities of up to 5 mol % after illumination with white light. Two-contact devices exhibit increased photoconductivity and can even show Ohmic behavior. These findings demonstrate that the confinement of organic semiconductors into one-dimensional aggregates results in a considerable stabilization of charge carriers for a variety of π-conjugated systems, which may have implications for the design of future organic electronic materials.  相似文献   

15.
The dual ligand system of V-shaped 5-(4-carboxy-2-nitrophenoxy)-isophthalic acid(Hcn-H2ipa) and dipyridy-type molecules produces two new coordination polymers: {[Ni(cn-Hipa)(bpa)(H2O)3]·1.5H2O}n 1 and {[Cu(Hcn-ipa)(ppe)2]}n 2(bpa = 1,2-bis(4-pyridyl)ethane, and ppe = trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene). Two complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, IR, and thermogravimetric analysis(TGA). Complex 1 is of monoclinic system, space group C2 with a = 25.936(3), b = 7.6100(10), c = 16.558(2), β = 105.9470(10)°, V = 3142.4(7) ?3, Dc = 1.415 g/cm3, Mr = 669.23, Z = 4, F(000) = 1388, μ = 0.687 mm-1, the final R = 0.0397 and w R = 0.0967 for 12070 observed reflections with I 2σ(I). Complex 2 belongs to the triclinic system, space group P1 with a = 10.165(5), b = 14.946(7), c = 15.506(11) ?, α = 106.461(7), β = 102.454(8), γ = 107.861(5)°, V = 2029(2) ?3, Dc = 1.266 g/cm3, Mr = 773.20, Z = 2, F(000) = 794, μ = 0.595 mm-1, the final R = 0.0538 and w R = 0.1378 for 15488 observed reflections with I 2σ(I). Two complexes show that the 1D polymeric chains are cohered together by extensive H-bonds to complete stable supramolecular microporous frameworks.  相似文献   

16.
17.
18.
A biscalix[5]arene–C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di‐ and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell‐shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using 1H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion‐ordered 1H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di‐ or tritopic hosts and dumbbell‐shaped fullerene in the range of 1.0–10 mmol L?1, the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell‐shaped fullerene. Honeycomb sheet‐like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.  相似文献   

19.
Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self‐assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G′?G′′) with outstanding mechanical properties and storage modulus of G′>1000 Pa. The G′ value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol‐solvated dendrimers into an aqueous solution. Cryogenic TEM, small‐angle X‐ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small‐molecule drugs, to be used for sustained release in drug delivery.  相似文献   

20.
Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host–guest interactions between dibenzo‐24‐crown‐8 and secondary ammonium salts and metal coordination interactions between 2,6‐bis(benzimidazolyl)‐pyridine units with metal ions (ZnII and/or EuIII) as orthogonal non‐covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3)2 and Eu(NO3)3) linkers to join the host–guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3)2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3)2 and 3 mol% Eu(NO3)3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号