首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
硫化氢在许多生理过程中扮演十分重要的角色,因此检测和成像生物体内的硫化氢具有十分重要的意义。该研究成功制备了一种基于分子内质子转移发色团的硫化氢荧光探针(DHCD)。在PBS-DMSO(磷酸盐-二甲基亚砜,99∶1,体积比,pH 7.45)缓冲溶液中,DHCD的荧光强度与NaHS的浓度在0~10μmol/L范围内呈现良好的线性关系,检出限为0.84μmol/L。该探针对硫化氢的响应具有较大的Stokes位移(~165 nm)、高灵敏度和选择性。此外,合成的探针拥有良好的细胞渗透性和低的毒性,可用于HeLa细胞中硫化氢的荧光成像,在生物分析中具有潜在应用价值。  相似文献   

2.
3.
4.
Bright and photostable fluorescent dyes with large Stokes shifts are widely used as sensors, molecular probes, and light‐emitting markers in chemistry, life sciences, and optical microscopy. In this study, new 7‐dialkylamino‐4‐trifluoromethylcoumarins have been designed for use in bioconjugation reactions and optical microscopy. Their synthesis was based on the Stille reaction of 3‐chloro‐4‐trifluoromethylcoumarins and available (hetero)aryl‐ or (hetero)arylethenyltin derivatives. Alternatively, the acylation of 2‐trifluoroacetyl‐5‐dialkylaminophenols with available (hetero)aryl‐ or (hetero)arylethenylacetic acids followed by intramolecular condensation afforded coumarins with 3‐(hetero)aryl or 3‐[2‐(hetero)aryl]ethenyl groups. Hydrophilic properties were provided by the introduction of a sulfonic acid residue or by phosphorylation of a primary hydroxy group attached at C‐4 of the 2,2,4‐trimethyl‐1,2‐dihydroquinoline fragment fused to the coumarin fluorophore. For use in immunolabeling procedures, the dyes were decorated with an (activated) carboxy group. The positions of the absorption and emission maxima vary in the ranges 413–480 and 527–668 nm, respectively. The phosphorylated dye, 9 ,CH?CH‐2‐py,H, with the 1‐(3‐carboxypropyl)‐4‐hydroxymethyl‐2,2‐dimethyl‐1,2‐dihydroquinoline fragment fused to the coumarin fluorophore bearing the 3‐[2‐(2‐pyridyl)ethenyl] residue (absorption and emission maxima at 472 and 623 nm, respectively) was used in super‐resolution light microscopy with stimulated emission depletion and provided an optical resolution better than 70 nm with a low background signal. As a result of their large Stokes shifts, good fluorescence quantum yields, and adequate photostabilities, phosphorylated coumarins enable two‐color imaging (using several excitation sources and a single depletion laser) to be combined with subdiffractional optical resolution.  相似文献   

5.
A unique two‐step modular system for site‐specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide–alkyne cycloaddition click reaction. The versatility of the two‐step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron‐emitting copper‐64 radiotracer for fluorescence and positron‐emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor‐made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.  相似文献   

6.
Bright fluorescent molecules with long fluorescence lifetimes are important for the development of lifetime‐based fluorescence imaging techniques. Herein, a molecular design is described for simultaneously attaining long fluorescence lifetime (τ) and high brightness (ΦF×?) in a system that features macrocyclic dimerization of fluorescent π‐conjugated skeletons with flexible linkers. An alkylene‐linked macrocyclic dimer of bis(thienylethynyl)anthracene was found to show excimer emission with a long fluorescence lifetime (τ≈19 ns) in solution, while maintaining high brightness. A comparison with various relevant derivatives revealed that the macrocyclic structure and the length of the alkylene chains play crucial roles in attaining these properties. In vitro time‐gated imaging experiments were conducted as a proof‐of‐principle for the superiority of this macrocyclic fluorophore relative to the commercial fluorescent dye Alexa Fluor 488.  相似文献   

7.
8.
A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2‐dicyano‐methylene‐3‐cyano‐4,5,5‐trimethyl‐2,5‐dihydrofuran (TCF) was obtained in high yield by a simple two‐step reaction. The resultant TPE‐TCF showed evident aggregation‐induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near‐IR (red‐NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red‐NIR emission and high efficiency, nanoparticles (NPs) of TPE‐TCF were fabricated by using tat‐modified 1,2‐distearoylsn‐glycero‐3‐phosphor‐ethanol‐amine‐N‐[methoxy‐(polyethyl‐eneglycol)‐2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co‐incubation with 4,6‐diamidino‐2‐phenylindole (DAPI) in the presence of tritons, the capsulated TPE‐TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI.  相似文献   

9.
In this paper, we report a new strategy for constructing a dye library with large Stokes shifts. By coupling a dark donor with BODIPY acceptors of tunable high quantum yield, a novel dark resonance energy transfer (DRET)‐based library, named BNM , has been synthesized. Upon excitation of the dark donor ( BDN ) at 490 nm, the absorbed energy is transferred to the acceptor ( BDM ) with high efficiency, which was tunable in a broad range from 557 nm to 716 nm, with a high quantum yield of up to 0.8. It is noteworthy to mention that the majority of the non‐radiative energy loss of the donor was converted into the acceptor’s fluorescence output with a minimum leak of donor emission. Fluorescence imaging tested in live cells showed that the BNM compounds are cell‐permeable and can also be employed for live‐cell imaging. This is a new library which can be excited through a dark donor allowing for strong fluorescence emission in a wide range of wavelengths. Thus, the BNM library is well suited for high‐throughput screening or multiplex experiments in biological applications by using a single laser excitation source.  相似文献   

10.
11.
12.
13.
In view of the few reports of the near-infrared emissive probe for fluorine ions, we herein designed and synthesized a new easy-to-get colorimetric and near-infrared emissive fluorescent probe (IS-NR-F) with a large Stokes shift (>127 nm). Based on specific F? triggered desilylation reaction induced enhanced ICT strategy involving the donor phenolate anion and the acceptor malononitrile, the probe exhibited dual colorimetric and fluorescent turn-on responses, and provided excellent selectivity for fluoride ions. The fluorescent response at 665 nm displayed very good linear relationship in the wide concentration range and deduced a low detection limit of 0.09 ppm. The detection mechanism was confirmed by 1H NMR, ESI-MS, and TLC calculation. Moreover, probe IS-NR-F has been successfully employed to detect F? in tap water, toothpaste samples, and fluorescent imaging of F? in HeLa cells.  相似文献   

14.
15.
16.
The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m ?1 cm?1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.  相似文献   

17.
极性是生物微环境的重要参数之一, 在很大程度上, 生物体内许多生命活动都受到极性变化的影响, 本工作通过改变香豆素母体上的推-拉电子基团, 设计并合成了一种具有较大斯托克斯位移的新型极性荧光探针COM-PO, 该探针的荧光强度和波长会随着测试体系的极性变化而发生改变. 当极性增加时, COM-PO的激发态能量会通过偶极-偶极的相互作用散失在溶剂中, 荧光发射强度降低, 而在低极性溶剂中荧光发射强度增强, 利用这种特性实现了对极性的检测. 本工作通过荧光光谱、荧光成像实验表明COM-PO能够在样品中实现极性检测, 该探针有望实现与极性相关的疾病的早期诊断.  相似文献   

18.
Graphitic carbon nitride nanodots (g‐C3N4 nanodots), as a new kind of heavy‐metal‐free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g‐C3N4 nanodots have been reported, it is still a challenge to synthesize g‐C3N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen‐doped graphitic carbon nitride (P,O‐g‐C3N4) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P‐g‐C3N4 derived from the pyrolysis of phytic acid and melamine. The as‐prepared P,O‐g‐C3N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen‐containing groups, and surface‐oxidation‐related fluorescence enhancement. In addition, the P,O‐g‐C3N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications.  相似文献   

19.
Inorganic metal halide perovskite system is considered as a promising candidate for applications from display to biomedical industry. Intrinsic inorganic lead halides possess small Stokes shift or self-absorption, providing negative impact for both photo voltaic and biomedical applications. Therefore, the development of an inorganic halide perovskite system with large Stokes shift is a significant venture. This review aims to provide an updated survey of the Stokes shift phenomena in the inorganic lead halide perovskites. The first section focuses about the mechanism, the second section gives different approaches in preparing inorganic perovskites with distinct Stokes shift, while the third section highlights the potential applications in both photovoltaic and biomedical areas. This review provides deep insight about the importance and usefulness of such phenomena in inorganic lead halides, essential for various applications.  相似文献   

20.
Imidazo[1,5-a]pyridine is a stable scaffold, widely used for the development of emissive compounds in many application fields (e.g., optoelectronics, coordination chemistry, sensors, chemical biology). Their compact shape along with remarkable photophysical properties make them suitable candidates as cell membrane probes. The study of the membrane dynamics, hydration, and fluidity is of importance to monitor the cellular health and to explore crucial biochemical pathways. In this context, five imidazo[1,5-a]pyridine-based fluorophores were synthesized according to a one-pot cyclization between an aromatic ketone and benzaldehyde in the presence of ammonium acetate and acetic acid. The photophysical features of prepared compounds were investigated in several organic solvents and probes 2–4 exhibited the greatest solvatochromic behavior, resulting in a higher suitability as membrane probes. Their interaction with liposomes as artificial membrane model was tested showing a successful intercalation of the probes in the lipid bilayer. Kinetic experiments were carried out and the lipidic phase influence on the photophysical features was evaluated through temperature-dependent experiments. The results herein reported encourage further investigations on the use of imidazo[1,5-a]pyridine scaffold as fluorescent membrane probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号