首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《化学:亚洲杂志》2017,12(8):910-919
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4N+)2[MIII(HFl−O)(Pc.3−)].−(Br) ⋅ 1.5 C6H4Cl2 [M=Al ( 1 ), Ga ( 2 ); HFl−O=fluoren‐9‐olato anion; Pc=phthalocyanine] and (Bu4N+) [InIIIBr(Pc.3−)].− ⋅ 0.875 C6H4Cl2 ⋅ 0.125 C6H14 ( 3 ). The salts were found to contain Pc.3− radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3− in the near‐IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl−O anions in 1 and 2 with short Al−O and Ga−O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C−O bonds [1.402(3) and 1.391(11) Å in 1 and 2 , respectively] in the HFl−O anions are longer than the same bond in the fluorenone ketyl (1.27–1.31 Å). Salts 1 – 3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S= 1/2 spins on Pc.3−. These spins are coupled antiferromagnetically with Weiss temperatures of −22, −14, and −30 K for 1 – 3 , respectively. Coupling can occur in the corrugated two‐dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J /k B=−0.9 and −1.1 K, respectively, and in the π‐stacking {[InIIIBr(Pc.3−)].−}2 dimers of 3 with an exchange interaction of J /k B=−10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3−. It was found that increasing the size of the central metal atom strongly broadened these EPR signals.  相似文献   

2.
The factors influencing the distortion of inorganic anions in the structures of chloridoantimonates(III) with organic cations, in spite of numerous structural studies on those compounds, have not been clearly described and separated. The title compound, [(C2H5)2NH2]3[SbCl6], consisting of isolated distorted [SbCl6]3− octahedra that have C3 symmetry and [(C2H5)2NH2]+ cations, unequivocally shows the role played by hydrogen bonding in the geometry variations of inorganic anions. The organic cations, which are linked to the inorganic substructure through N—H...Cl hydrogen bonds, are clearly responsible for the distortion of the octahedral coordination of SbIII in terms of differences (Δ) in both Sb—Cl bond lengths [Δ = 0.4667 (6) Å] and Cl—Sb—Cl angles [Δ = 9.651 (17)°].  相似文献   

3.
Only a few cyclooctatetraene dianion (COT) π‐complexes of lanthanides have been crystallographically characterized. This first single‐crystal X‐ray diffraction characterization of a scandium(III) COT chloride complex, namely di‐μ‐chlorido‐bis[(η8‐cyclooctatetraene)(tetrahydrofuran‐κO )scandium(III)], [Sc2(C8H8)2Cl2(C4H8O)2] or [Sc(COT)Cl(THF)]2 (THF is tetrahydrofuran), (1), reveals a dimeric molecular structure with symmetric chloride bridges [average Sc—Cl = 2.5972 (7) Å] and a η8‐bound COT ligand. The COT ring is planar, with an average C—C bond length of 1.399 (3) Å. The Sc—C bond lengths range from 2.417 (2) to 2.438 (2) Å [average 2.427 (2) Å]. Direct comparison of (1) with the known lanthanide (Ln) analogues (La, Ce, Pr, Nd, and Sm) illustrates the effect of metal‐ion (M ) size on molecular structure. Overall, the M —Cl, M —O, and M —C bond lengths in (1) are the shortest in the series. In addition, only one THF molecule completes the coordination environment of the small ScIII ion, in contrast to the previously reported dinuclear Ln–COT–Cl complexes, which all have two bound THF molecules per metal atom.  相似文献   

4.
Antimony pentafluoride is a strong Lewis acid and fluoride-ion acceptor that has not previously demonstrated any discreet fluoride-ion donor properties. The first donor-stabilised [SbF4]+ cations were prepared from the autoionisation of SbF5 in the presence of bidentate N-donor ligands 2,2’-bipyridine (bipy) and 1,10-phenanthroline (phen) as their [SbF6] salts. The [SbF4(N−N)][Sb2F11] (N−N=bipy, phen) salts were synthesised by the addition of one equivalent of SbF5⋅SO2 to [SbF4(N−N)][SbF6] in liquid SO2. The salts show remarkable stability and were characterised by Raman spectroscopy and multinuclear NMR spectroscopy. The crystal structures of [SbF4(phen)][SbF6] ⋅ 3CH3CN and [SbF4(phen)][SbF6] ⋅ 2SO2 were determined, showing distorted octahedral cations. DFT calculations and NBO analyses reveal that significant degree of electron-pair donation from N to Sb stabilizes [SbF4]+ with the Sb−N bond strength being approximately two thirds of that of the Sb−F bonds in these cations and the cationic charge being primarily ligand-centred.  相似文献   

5.
New complex [Mn (SB)2(DMF)2] [W (CN)8] hereafter referred to as complex 1 , which was prepared by self–assembly of [Mn (SB)2(DMF)2]3+ and [W (CN)8]3− and structurally characterized by elemental analysis, infrared (IR) and single crystal X–ray techniques (H2SB is Schiff base derived from the condensation of salicylaldehyde and N,N–diethylethylenediamine and DMF is dimethylformamide). The structure consists of 1–D supramolecular chains and further stacks to give a 3–D supramolecular architecture whose molecular fragments are linked by hydrogen bond as well as C − H···π interactions between [Mn (SB)2(DMF)2]3+ and [W (CN)8]3−. An underlying net for the representation consists of two types of fragments with 1,4 M5–1 and 1,8 M9–1 topologies and further illustration of the molecular network in terms of a graph−theory approach using simplification procedure resulted in the underlying net of 2C1topological type in the complex 1 . Magnetic susceptibility measurements of complex 1 was carried out in the temperature range 2–300 K, indicates the presence of either magnetic anisotropy zero field splitting, the effect of intramolecular interactions, or both. Complex 1 follows the Curie–Weiss law with Curie constant value of 3.43 cm3mol−1K, and the slight negative Weiss constant (−0.60 K) value indicates the predominant antiferromagnetic magnetic exchange interactions. The magnetic properties of Title complex was investigated thoroughly and showed that ferromagnetic interaction between W(V) and Mn (III) operate via the intramolecular H–bonding interaction between cyanide nitrogens and a hydrogen atom.  相似文献   

6.
Orange-colored crystals of the oxoferrate tellurate K12+6xFe6Te4−xO27 [x=0.222(4)] were synthesized in a potassium hydroxide hydroflux with a molar water–base ratio n(H2O)/n(KOH) of 1.5 starting from Fe(NO3)3 ⋅ 9H2O, TeO2 and H2O2 at about 200 °C. By using (NH4)2TeO4 instead of TeO2, a fine powder consisting of microcrystalline spheres of K12+6xFe6Te4−xO27 was obtained. K12+6xFe6Te4−xO27 crystallizes in the acentric cubic space group I 3d. [FeIIIO5] pyramids share their apical atoms in [Fe2O9] groups and two of their edges with [TeVIO6] octahedra to form an open framework that consists of two loosely connected, but not interpenetrating, chiral networks. The flexibility of the hinged oxometalate network manifests in a piezoelectric response similar to that of LiNbO3.The potassium cations are mobile in channels that run along the <111> directions and cross in cavities acting as nodes. The ion conductivity of cold-pressed pellets of ball-milled K12+6xFe6Te4−xO27 is 2.3×10−4 S ⋅ cm−1 at room temperature. Magnetization measurements and neutron diffraction indicate antiferromagnetic coupling in the [Fe2O9] groups.  相似文献   

7.
A photochemical route to salts consisting of difluorooxychloronium(V) cations, [ClOF2]+, and hexafluorido(non)metallate(V) anions, [MF6] (M=V, Nb, Ta, Ru, Os, Ir, P, Sb) is presented. As starting materials, either metals, oxygen and ClF3 or oxides and ClF3 are used. The prepared compounds were characterized by single-crystal X-ray diffraction and Raman spectroscopy. The crystal structures of [ClOF2][MF6] (M=V, Ru, Os, Ir, P, Sb) are layer structures that are isotypic with the previously reported compound [ClOF2][AsF6], whereas for M=Nb and Ta, similar crystal structures with a different stacking variant of the layers are observed. Additionally, partial or full O/F disorder within the [ClOF2]+ cations of the Nb and Ta compounds occurs. In all compounds reported here, a trigonal pyramidal [ClOF2]+ cation with three additional Cl⋅⋅⋅F contacts to neighboring [MF6] anions is observed, resulting in a pseudo-octahedral coordination sphere around the Cl atom. The Cl−F and Cl−O bond lengths of the [ClOF2]+ cations seem to correlate with the effective ionic radii of the MV ions. Quantum-chemical, solid-state calculations well reproduce the experimental Raman spectra and show, as do quantum-chemical gas phase calculations, that the secondary Cl⋅⋅⋅F interactions are ionic in nature. However, both solid-state and gas-phase quantum-chemical calculations fail to reproduce the increases in the Cl−O bond lengths with increasing effective ionic radius of M in [MF6] and the Cl−O Raman shifts also do not generally follow this trend.  相似文献   

8.
Abstract

Two three-dimensional frameworks composed of doubly interpenetrating networks of the same topology but different stereoisomeric structures have been constructed from self-assembly of the chiral building block, Δ- or Δ-[Nd(ntb)2]3+, with different spacers bipy and bpen (ntb = tris(2-benzimidazolylmethyl) amine, bipy = 4,4″-bipyridyl, bpen = trans-1,2-bis (4-pyridyl)ethylene). In the crystal structure of [Nd(ntb)2](ClO4)3·3bipy·2H2O the spacer bipy connects [Nd(ntb)2]3+ cations of the same handedness to generate a chiral network Δ3-Δ…(or Δ3-Δ…){[Nd(ntb)2](bipy)3}3+∞, which is interpenetrated further by another identical network. The crystal structure of [Nd(ntb)2](ClO4)3·3bpen·H2O shows a topologically similar but achiral framework in which non-planar and planar bpen spacers connect cations of the same chirality and a pair of enantiomers, respectively, thus generating a three-dimensional racemate Δ2Δ…(or Δ2Δ-Δ…){[Nd(ntb)2](bpen)3}3+∞. Aggregation of the molecular species is effected by N-H…N hydrogen bonds, and the observed enantioselective self-assembly can be rationalized by π…π interactions between aromatic rings.  相似文献   

9.
Details of the structures of two polymorphs of tris(ethylenediamine)cobalt(III) tetrathioantimonate(V), [Co(C2H8N2)3][SbS4], are reported. The first polymorph crystallizes in the orthorhombic space group Pna21, whereas the second polymorph belongs to the tetragonal space group P42bc. Both structures contain octahedral [Co(en)3]3+ cations (en is ethylenediamine) and tetrahedral [SbS4]3− anions, which are interconnected via various N—H...S hydrogen bonds to form two different types of three‐dimensional network.  相似文献   

10.
In this contribution we investigated the ion complexation of Bühl's cryptand, dodeka(ethylene)octamine by quantum chemical methods (B3LYP/LANL2DZp). This cryptand is an isomer of a well‐known Lehn‐type cryptand [TriPip222]. The ion selectivity was determined based on the energetic criteria derived by model reactions starting from solvated metal ions and empty dodeka(ethylene)octamine, and by comparing the M–N bond length in [M ? dodeka(ethylene)octamine]m+ and [M(NH3)6]m+. We calculated that Bühl's cryptand will complex best Na+ followed by Li+ as alkaline cations and Ca2+ followed by Mg2+ as alkaline earth metal ions. Based on this data we conclude that Bühl's cryptand offers a smaller cavity to nest ions than the Lehn‐type [TriPip222].  相似文献   

11.
Reactions of [Mn(H2dapsc)Cl2] ⋅ H2O (dapsc=2,6- diacetylpyridine bis(semicarbazone)) with K3[Fe(CN)6] and (PPh4)3[Fe(CN)6] lead to the formation of the chain polymeric complex {[Mn(H2dapsc)][Fe(CN)6][K(H2O)3.5]}n ⋅ 1.5n H2O ( 1 ) and the discrete pentanuclear complex {[Mn(H2dapsc)]3[Fe(CN)6]2(H2O)2} ⋅ 4 CH3OH ⋅ 3.4 H2O ( 2 ), respectively. In the crystal structure of 1 the high-spin [MnII(H2dapsc)]2+ cations and low-spin hexacyanoferrate(III) anions are assembled into alternating heterometallic cyano-bridged chains. The K+ ions are located between the chains and are coordinated by oxygen atoms of the H2dapsc ligand and water molecules. The magnetic structure of 1 is built from ferrimagnetic chains, which are antiferromagnetically coupled. The complex exhibits metamagnetism and frequency-dependent ac magnetic susceptibility, indicating single-chain magnetic behavior with a Mydosh-parameter φ=0.12 and an effective energy barrier (Ueff/kB) of 36.0 K with τ0=2.34×10−11 s for the spin relaxation. Detailed theoretical analysis showed highly anisotropic intra-chain spin coupling between [FeIII(CN)6]3− and [MnII(H2dapsc)]2+ units resulting from orbital degeneracy and unquenched orbital momentum of [FeIII(CN)6]3− complexes. The origin of the metamagnetic transition is discussed in terms of strong magnetic anisotropy and weak AF interchain spin coupling.  相似文献   

12.
The alkaline earth metals (M=Mg, Ca, Sr, and Ba) exhibit a +2 oxidation state in nearly all known stable compounds, but MI dimeric complexes with M−M bonding, [M2(en)2]2+, (en=ethylenediamine) of all these metals can be stabilized within the galleries of donor-type graphite intercalation compounds (GICs). These metals can also form GICs with more conventional metal (II) ion complexes, [M(en)2]2+. Here, the facile interconversion between dimeric-MI and monomeric-MII intercalates upon the addition/removal of en are reported. Thermogravimetry, powder X-ray diffraction, and pair distribution function analysis of total scattering data support the presence of either [M2(en)2]2+ or [M(en)2]2+ guests. This phase conversion requires coupling graphene and metal redox centers, with associated reversible M−M bond formation within graphene galleries. This chemistry allows the facile isolation of unusual oxidation states, reveals M0→M2+ reaction pathways, and present new opportunities in the design of hybrid conversion/intercalation materials for applications such as charge storage.  相似文献   

13.
The reaction of fumaryl fluoride with the superacidic solutions XF/MF5 (X=H, D; M=As, Sb) results in the formation of the monoprotonated and diprotonated species, dependent on the stoichiometric ratio of the Lewis acid to fumaryl fluoride. The salts [C4H3F2O2]+[MF6] (M=As, Sb) and [C4H2X2F2O2]2+([MF6])2 (X=H, D; M=As, Sb) are the first examples with a protonated acyl fluoride moiety. They were characterized by low-temperature vibrational spectroscopy. Low-temperature NMR spectroscopy and single-crystal X-ray structure analyses were carried out for [C4H3F2O2]+[SbF6] as well as for [C4H4F2O2]2+([MF6])2 (M=As, Sb). The experimental results are discussed together with quantum chemical calculations of the cations [C4H4F2O2 ⋅ 2 HF]2+ and [C4H3F2O2 ⋅ HF]+ at the B3LYP/aug-cc-pVTZ level of theory. In addition, electrostatic potential (ESP) maps combined with natural population analysis (NPA) charges were calculated in order to investigate the electron distribution and the charge-related properties of the diprotonated species. The C−F bond lengths in the protonated dication are considerably reduced on account of the +R effect.  相似文献   

14.
The hybrid bidentate 1-(2-pyridyl)benzotriazole (pyb) ligand was introduced into 3d transition metal catalysis. Specifically, [CuII(OTf)2(pyb)2] ⋅ 2 CH3CN ( 1 ) enables the synthesis of a wide range of propargylamines by the A3 coupling reaction at room temperature in the absence of additives. Experimental and high-level theoretical calculations suggest that the bridging N atom of the ligand imposes exclusive trans coordination at Cu and allows ligand rotation, while the N atom of the pyridine group modulates charge distribution and flux, and thus orchestrates structural and electronic precatalyst control permitting alkyne binding with simultaneous activation of the C−H bond via a transient CuI species.  相似文献   

15.
The reaction of the heteroleptic Nd(III) iodide, [Nd(L′)(N″)(μ-I)] with the potassium salts of primary aryl amides [KN(H)Ar′] or [KN(H)Ar*] affords heteroleptic, structurally characterised, low-coordinate neodymium amides [Nd(L′)(N″)(N(H)Ar′)] and [Nd(L′)(N″)(N(H)Ar*)] cleanly (L′ = t-BuNCH2CH2[C{NC(SiMe3)CHNt-Bu}], N″ = N(SiMe3)2, Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-Pri2C6H3, Ar* = 2,6-(2,4,6-Pri3C6H2)2C6H3). The potassium terphenyl primary amide [KN(H)Ar*] is readily prepared and isolated, and structurally characterised. Treatment of these primary amide-containing compounds with alkali metal alkyl salts results in ligand exchange to give alkali metal primary amides and intractable heteroleptic Nd(III) alkyl compounds of the form [Nd(L′)(N″)(R)] (R = CH2SiMe3, Me). Attempted deprotonation of the Nd-bound primary amide in [Nd(L′)(N″)(N(H)Ar*)] with the less nucleophilic phosphazene superbase ButNP{NP(NMe2)3}3 resulted in indiscriminate deprotonations of peripheral ligand CH groups.  相似文献   

16.
Anhydrous neodymium(III) acetate, Nd(OAc)3 was obtained as light purple single crystals by direct oxidation of neodymium metal with malonic acid in a glass ampoule at 180 °C. It crystallizes with the monoclinic space group P21/a (no. 14) with a = 2201.7(2), b = 1850.0(1), c = 2419.0(3) pm, β = 96.127(8)°, V = 9796.8(1)·106·pm3, Z = 40 [Nd(OAc)3], R1 = 0.0430 [I0 > 2σ(I0)]. Most of the Nd3+ cations are coordinated by nine (or eight) oxygen atoms of acetate ligands which bridge these polyhedra to slightly waved layers which are stacked in the [010] direction.  相似文献   

17.
X-ray structures of the halo-substituted complexes [FeIII(5-X-salMeen)2]ClO4 (X=F, Cl, Br, I) [salMeen=N-methyl-N-(2-aminoethyl)salicylaldiminate]at RT have revealed the presence of two discrete HS complex cations in the crystallographic asymmetric unit with two perchlorate counter ions linking them by N−Hamine⋅⋅⋅Operchlorate interactions. At 90 K, the two complex cations are distinctly HS and LS, a rare crystallographic observation of this coexistence in the FeIII-salRen (R=alkyl) spin-crossover (SCO) system. At both temperatures, crystal packing shows dimerization through C−Himine⋅⋅⋅Ophenolate interactions, a key feature for SCO cooperativity. Moreover, there are noncovalent contacts between the complex cations through type-II halogen-halogen bonds, which are novel in this system. The magnetic profiles and Mössbauer spectra concur with the structural analyses and reveal 50 % SCO of the type [HS-HS]↔[HS-LS] with a broad plateau. In contrast, [FeIII(5-Cl-salMeen)2]BPh4⋅2MeOH is LS and exhibits a temperature-dependent crystallographic phase transition, exemplifying the influence of lattice solvents and counter ions on SCO.  相似文献   

18.
Solutions of nickel(II) chloride in N,N-dimethylformamide (DMF) in the presence of Et2O slowly give bluegreen crystals of [Ni(dmf)6][NiCl4] whose structure has been confirmed by X-ray crystallography. The complex crystallises with three crystallographically distinct [Ni(dmf)6]2+ cations in the asymmetric unit, Ni(1) on a general position and Ni(2) and Ni(3) on centres of symmetry. There are also two unique [NiCl4]2− anions, both on general positions. N,N-Dimethylformamide is O-bonded to nickel as coordination via nitrogen would cause the loss of the resonance energy of the amide group. All Ni—O bond lengths are within the expected range for such complexes [2.029(4)–2.084(4) \rA]. The C=O bond lengths, which range from 1.219(7) to 1.259(7) \rA, are not significantly different from those for uncomplexed dmf (1.232 ± 0.004 \rA), suggesting that there is very little polarisation of the C=O bond by nickel(II). Oxygen-bonded dmf undergoes rapid hydrolysis in metal complexes, for example the base hydrolysis of [Co(NH3)5dmf]3+ to give the formato complex is some 104-fold faster than that of the free ligand. Copper(II)-catalysed amide and peptide bond hydrolysis is subject to ca. 106-fold rate enhancements. The origin of these rate enhancements, which appear to be due to transition state effects rather than ground state effects, is discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The title compounds, (C2H6NO2)2[NbOF5], (I), and (C3H8NO2)2[NbOF5]·2H2O, (II), are built from isolated distorted octahedral [NbOF5]2− complex anions, amino acid cations and water molecules [for (II)]. In the pentafluoridooxidoniobate(V) anions, the Nb and O atoms, and the F atoms in trans positions with respect to the O atoms, are disordered about an inversion centre for both structures. The Nb atoms are shifted from the inversion centres by distances of 0.1455 (1) and 0.1263 (2) Å for (I) and (II), respectively. The Nb=O and Nb—F(trans) bond lengths are 1.7952 (3) and 2.0862 (3) Å, respectively, for (I), and 1.8037 (7) and 2.0556 (7) Å for (II). In the crystal structures, cations and water molecules [for (II)] are linked to the [NbOF5]2− anions via hydrogen bonds. This study demonstrates the possibility of true geometry determination of disordered [NbOF5]2− complex anions in centrosymmetric structures.  相似文献   

20.
Summary Cobalt(III) and chromium(III) complexes of thiosemicarbazide (Htsc) were prepared and the structure of [Co(Htsc)3]Cl3·3H2O was determined by X-ray crystallography. The structure was solved by direct methods and refined by full matrix least squares to R = 0.035 for 2266 observed reflections. The metal has octahedral geometry with a cis arrangement of Htsc ligands. The [Co(Htsc)3]3+ cations within the unit cell are strongly hydrogen bonded through H2O molecules with the hydrogen bonding nitrogen-oxygen distances between 2.807–2.937 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号