首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2PCH2CH2PMe2), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2PCH2CH2CH2PMe2), together with a more electron‐withdrawing diphosphine ligand, PNMeP (Me2PCH2NMeCH2PMe2), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cistrans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru?H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru?H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cistrans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PNMePRu complex, cistrans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cistrans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition‐metal‐catalyzed CO2 transformation.  相似文献   

2.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

3.
    
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

4.
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

5.
Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain PdII centers, controversial PdII/PdIV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type PdIV intermediates have never been experimentally observed, and computational studies to support the proposed PdII/PdIV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving PdIV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and (E)‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that PdII/PdIV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C6H3(XPR2)2}Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R=iPr ( 1 c ); X=CH2, R=iPr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e? palladium intermediates of type [{2,6‐C6H3(XPR2)2}Pd]+ ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C6H3(XPR2)2}Pd(Cl)(CH2?CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C6H3(XPR2)2}Pd(CH2?CHPh)]+ ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate PdIV complexes of type [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)]+ ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)(CH2?CHPh)]+ ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(CHPhCH2Ph)]+ ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar (E)‐stilbene complexes with general formula [{2,6‐C6H3(XPR2)2}Pd(CHPh?CHPh)]+ ( 14 ). Subsequent liberation of (E)‐stilbene closes the catalytic cycle.  相似文献   

6.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

7.
A CO2-mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd–Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6@S-1 catalyst afforded a formate generation rate of 2151 molformate molPd−1 h−1 at 353 K, and an initial turnover frequency of 6860 mol molPd−1 h−1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2-mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.  相似文献   

8.
Reduced CO2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni?CO22? complex that is unique in many ways. While its structural and electronic features help understand the CO2‐bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO2 can be converted into CO/CO32? by nickel complexes. In addition, the complex was generated by a rare example of formate β‐deprotonation, a mechanistic step relevant to the nickel‐catalysed conversion of HxCOyz? at electrodes and formate oxidation in formate dehydrogenases.  相似文献   

9.
The dative Pd→B interaction in a series of RDPBR’ Pd0 and PdII complexes (RDPBR’=(o-PR2C6H4)2BR’, diphosphinoborane) was analyzed using XRD, 11B NMR spectroscopy and NBO/NLMO calculations. The borane acceptor discriminates between the oxidation state PdII and Pd0, stabilizing the latter. Reaction of lithium amides with [(RDPBR’)PdII(4-NO2C6H4)I] chemoselectively yields the C−N coupling product. DFT modelling indicates no significant impact of PdII→B coordination on the inner-sphere reductive elimination rate.  相似文献   

10.
Norbornadiene (NBD) reacts with allyl esters All—OC(O)R (R = Me, But, Ph, CCl3, CF3) in acetonitrile solutions of palladium(0) complexes to give a mixture of four isomeric nontraditional allylation products and the corresponding carboxylic acids. Under similar conditions, the reaction of NBD with allyl formate in solutions of Pd0 and PdII complexes occurs selectively, resulting in the product of addition of the allyl fragment and the H atom to an NBD double bond, 5-allylbicyclo[2.2.1]hept-2-ene, and CO2. The hydroallylation of NBD is accompanied by catalytic addition of formic and acetic acids to one double bond of the diene to give bicyclo[2.2.1]hept-2-en-5-ol and nortricyclan-3-ol acetates and formates. Unlike most known palladium-based catalyst systems, these complexes exhibit catalytic activity also in the absence of phosphines. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 309–313, February, 2007.  相似文献   

11.
DFT calculations were performed to elucidate the oxidative addition mechanism of the dimeric palladium(II) abnormal N‐heterocyclic carbene complex 2 in the presence of phenyl chloride and NaOMe base under the framework of a Suzuki–Miyaura cross‐coupling reaction. Pre‐catalyst 2 undergoes facile, NaOMe‐assisted dissociation, which led to monomeric palladium(II) species 5 , 6 , and 7 , each of them independently capable of initiating oxidative addition reactions with PhCl. Thereafter, three different mechanistic routes, path a, path b, and path c, which originate from the catalytic species 5 , 7 , and 6 , were calculated at M06‐L ‐D3(SMD)/LANL2TZ(f)(Pd)/6–311++G**//M06‐L/LANL2DZ(Pd)/6–31+G* level of theory. All studied routes suggested the rather uncommon PdII/PdIV oxidative addition mechanism to be favourable under the ambient reaction conditions. Although the Pd0/PdII routes are generally facile, the final reductive elimination step from the catalytic complexes were energetically formidable. The PdII/PdIV activation barriers were calculated to be 11.3, 9.0, 26.7 kcal mol?1 (ΔΔGLS‐D3) more favourable than the PdII/Pd0 reductive elimination routes for path a, path b, and path c, respectively. Out of all the studied pathways, path a was the most feasible as it comprised of a PdII/PdIV activation barrier of 24.5 kcal mol?1GLS‐D3). To further elucidate the origin of transition‐state barriers, EDA calculations were performed for some key saddle points populating the energy profiles.  相似文献   

12.
Details on the reactions of: (1) Pd+ + CH3CHO → PdCO+ + CH4 and (2) Pd+ + CH3CHO → PdH + CH3CO+ in the gas phase were investigated using density functional theory (B3LYP), in conjunction with the LANL2DZ+6‐311+G(d) basis set. Three encounter complexes were located on the potential energy surfaces and the calculations indicated that both the C? C and aldehyde C? H bond activation of acetaldehyde could lead to the dominant demethanation reaction. The charge transfer process for PdH abstraction was caused by an intramolecular PdH rearrangement of the newly found η1‐aldehyde attached complex. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
The fragmentation pathways of protonated imine resveratrol analogues in the gas‐phase were investigated by electrospray ionization–tandem mass spectrometry. Benzyl cations were formed in the imine resveratrol analogues that had an ortho‐hydroxyl group on the benzene ring A. The specific elimination of the quinomethane neutral, CH2 = C6H4 = O, from the two isomeric ions [M1 + H]+ and [M3 + H]+ via the corresponding ion–neutral complexes was observed. The fragmentation pathway for the related meta‐isomer, ion [M2 + H]+ and the other congeners was not observed. Accurate mass measurements and additional experiments carried out with a chlorinated analogue and the trideuterated isotopolog of M1 supported the overall interpretation of the fragmentation phenomena observed. It is very helpful for understanding the intriguing roles of ortho‐hydroxyl effect and ion–neutral complexes in fragmentation reactions and enriching the knowledge of the gas‐phase chemistry of the benzyl cation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We investigated the gas‐phase fragmentation reactions of a series of 2‐aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The most intense fragment ions were the acylium ions m/z 105 and [M+H–C6H6]+, which originated directly from the precursor ion as a result of 2 competitive hydrogen rearrangements. Eliminations of CO and CO2 from [M+H–C6H6]+ were also common fragmentation processes to all the analyzed compounds. In addition, eliminations of the radicals •Br and •Cl were diagnostic for halogen atoms at aromatic ring A, whereas eliminations of •CH3 and CH2O were useful to identify the methoxyl group attached to this same ring. We used thermochemical data, obtained at the B3LYP/6‐31+G(d) level of theory, to rationalize the fragmentation pathways and to elucidate the formation of E , which involved simultaneous elimination of 2 CO molecules from B .  相似文献   

15.
Formate and carbonate complexes and bridging and linear methoxy groups were detected on the surfaces of CeO2 and 5.0% Cu/CeO2 under the reaction conditions of methanol conversion using IR spectroscopy. The reaction products were H2, methyl formate, CO, CO2, and H2O. The bridging and linear methoxy groups were the sources of formation of bi- and monodentate formate complexes, respectively. Methyl formate was formed as a result of the interaction of the linear methoxy group and the formate complex. The study demonstrated that the recombination of hydrogen atoms on copper clusters and the decomposition of methyl formate were the main reactions of hydrogen formation. Formate and carbonate complexes were the source of CO2 formation in the gas phase, and the decomposition of methyl formate was the source of CO. It was found that the addition of water vapor to the reaction flow considerably decreased the rate of CO formation at a constant yield of hydrogen. The effects of water vapor and oxygen on the course of surface reactions and the formation of products are discussed. To explain the mechanism of methanol conversion, a scheme of surface reactions is proposed.  相似文献   

16.
Summary Zirconia-supported hydrogenation catalysts were obtained by activation of the amorphous precursors Cu70Zr30 and Pd25Zr75 under CO2 hydrogenation conditions. Catalysts of comparable compositions prepared by co-precipitation and wet impregnation of zirconia with copper- and palladium salts, respectively, served as reference materials. The catalyst surfaces under reaction conditions were investigated by diffuse reflectance FTIR spectroscopy. Carbonates, formate, formaldehyde, methylate and methanol were identified as the pivotal surface species. The appearance and surface concentrations of these species were correlated with the presence of CO2 and CO as reactant gases, and with the formation of either methane or methanol as reaction products. Two major pathways have been identified from the experimental results. i) The reaction of CO2/H2-mixtures on Cu/zirconia and Pd/zirconia primarily yields surface formate, which is hydrogenated to methane without further observable intermediates. ii) The catalytic reaction between CO and hydrogen yields -bonded formaldehyde, which is subsequently reduced to methylate and methanol. Interestingly, there is no observable correlation between absorbed formaldehyde or methylate on the one hand, and gas phase methane on the other hand. The reactants, CO2 and CO, can be interconverted catalytically by the water gas shift reaction. The influence of the metals on this system of coupled reactions gives rise to different product selectivities in CO2 hydrogenation reactions. On zirconia-supported palladium catalysts, surface formate is efficiently reduced to methane, which consequently appears to be the principal CO2 hydrogenation product. In contrast, there is a favorable reaction pathway on copper in which CO is reduced to methanol without C-O bond cleavage; surface formate does not participate significantly in this reaction. In CO2 hydrogenations on copper/zirconia, methanol can be obtained as the main product, from a sequence of the reverse water gas shift reaction followed by CO reduction.  相似文献   

17.
The reduction of PdII precatalysts to catalytically active Pd0 species is a key step in many palladium‐mediated cross‐coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc)2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray‐ ionization mass spectrometry found palladate(II) complexes [LnPdR3]? (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas‐phase fragmentation, the [LnPdR3]? anions preferentially underwent a reductive elimination to yield Pd0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc)2 precatalyst. Other species of interest observed include the PdIV complex [PdBn5]?, which did not fragment via a reductive elimination but lost BnH instead.  相似文献   

18.
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H2O)2]2+ where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H2O)2]2+ results with one to four Pd2+ or Pd(en)2+ being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd2+, rather than all Pd(en)2+. IM-MS/MS of [UbPd2en+5H]9+ shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd2+. These results suggest that Pd2+ is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd2+ probably reduces the efficiency of Pd2+ ions to selectively cleave Ub because it prevents Pd2+ anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the “activated complex” necessary for specific peptide bond cleavage.  相似文献   

19.
By using a linear tetraphosphine, meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona‐ and hexadecanuclear copper hydride clusters, [Cu9H7(μ‐dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ‐dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6?(2/3) OH ( 2 d )) were synthesized and characterized. They form copper‐hydride cages of apex‐truncated supertetrahedral {Cu9H7}2+ and square‐face‐capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ‐dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ‐dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

20.
Capture of CO2 and its conversion into organic feedstocks are increasingly needed as society moves towards a renewable energy economy. Here, a hydride-assisted selective reduction pathway is proposed for the conversion of CO2 to formic acid (FA) over SnO2 monomers and dimers. Our density functional theory calculations infer a strong chemisorption of CO2 on SnO2 clusters forming a carbonate structure, whereas heterolytic cleavage of H2 provides a new pathway for the selective reduction of CO2 to formic acid at low overpotential. Among the two investigated pathways for reduction of CO2 to HCOOH, the hydride pinning pathway is found promising with a unique selectivity for HCOOH. The negatively-charged hydride forms on the cluster during the dissociation of H2 and facilitates the formation of a formate intermediate, which determines the selectivity for FA over the alternative CO and H2 evolution reaction. It is confirmed that SnO2 clusters exhibit a different catalytic behaviour from their surface equivalents, thus offering promise for future work investigating the reduction of CO2 to FA via a hydride pinning pathway at low overpotential and CO2 capturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号