首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π‐gelator ( MC‐OPV ) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10?4 m , MC‐OPV did not exhibit a CD signal; however, the addition of 0–0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High‐resolution TEM analysis and solid‐state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical‐cable formation has not been reported previously.  相似文献   

2.
We have used a mechanochemical high-speed vibration milling (HSVM) technique to solubilize single-walled carbon nanotubes (SWNTs) in organic solvents through the formation of complexes between the SWNTs and a polythiophene (PT) derivative. This HSVM approach is superior to the conventional sonication method used to solubilize SWNTs in organic solvents. Moreover, we found that in these supramolecular complexes the PT chains were ordered one-dimensionally on the SWNT surfaces in organic solvents. [structure: see text].  相似文献   

3.
Synthesized single-walled carbon nanotubes (SWNTs) are mixtures of right- and left-handed helicity and their separation is an essential topic in nanocarbon science. In this paper, we describe the separation of right- and left-handed semiconducting SWNTs from as-produced SWNTs. Our strategy for this goal is simple: we designed copolymers composed of polyfluorene and chiral bulky moieties because polyfluorenes with long alkyl-chains are known to dissolve only semiconducting SWNTs and chiral binaphthol is a so-called BINAP family that possesses a powerful enantiomer sorting capability. In this study, we synthesized 12 copolymers, (9,9-dioctylfluorene-2,7-diyl)x((R)- or (S)-2,2'-dimethoxy-1,1'-binaphthalen-6,6-diyl)y, where x and y are copolymer composition ratios. It was found that, by a simple one-pot sonication method, the copolymers are able to extract either right- or left-handed semiconducting SWNT enantiomers with (6,5)- and (7,5)-enriched chirality. The separated materials were confirmed by circular dichroism, vis-near IR and photoluminescence spectroscopies. Interestingly, the copolymer showed inversion of SWNT enantiomer recognition at higher contents of the chiral binaphthol moiety. Molecular mechanics simulations reveal a cooperative effect between the degree of chirality and copolymer conformation to be responsible for these distinct characteristics of the extractions. This is the first example describing the rational design and synthesis of novel compounds for the recognition and simple sorting of right- and left-handed semiconducting SWNTs with a specific chirality.  相似文献   

4.
Understanding the quantitative analysis of the transition adsorption structures of molecules on single‐walled carbon nanotubes (SWNTs) is of importance from the point of view of both fundamental science and applications of nanotubes. Absorption spectroscopy reveals that two different equilibrium states are existent for the exchange reaction of sodium cholate (SC) and oligo‐DNA (single‐stranded 20‐mer cytosine) on SWNTs. This is derived from the transitions of the adsorption structures of different chirality‐types of SWNTs and SC/DNA at certain SC concentrations below the critical micelle concentration of SC.  相似文献   

5.
The self‐assembly of a low‐molecular‐weight organogelator into various hierarchical structures has been achieved for a pyridylpyrazole linked L ‐glutamide amphiphile in different solvents. Upon gel formation, supramolecular chirality was observed, which exhibited an obvious dependence on the polarity of the solvent. Positive supramolecular chirality was obtained in nonpolar solvents, whereas it was inverted into negative supramolecular chirality in polar solvents. Moreover, the gelator molecules self‐assembled into a diverse array of nanostructures over a wide scale range, from nanofibers to nanotubes and microtubes, depending on the solvent polarity. Such morphological changes could even occur for the xerogels in the solvent vapors. We found that the interactions between the pyridylpyrazole headgroups and the solvents could subtly change the stacking of the molecules and, hence, their self‐assembled nanostructures. This work exemplifies that organic solvents can significantly involve the gelation, as well as tune the structure and properties, of a gel.  相似文献   

6.
The selective and predictable synthesis of structurally uniform carbon nanotubes (CNTs) represents a long‐standing goal in both nanocarbon science and synthetic organic chemistry. This Review focuses on synthetic studies toward the controlled synthesis of CNTs with single chirality through the organic synthesis of CNT segments and the organic template assisted growth of CNTs.  相似文献   

7.
The density distribution patterns of water inside and outside neutral and charged single-walled carbon nanotubes (SWNTs) soaked in water have been studied using molecular dynamics simulations based on TIP3P potential and Lennard-Jones parameters of CHARMM force field, in conjunction with ab initio calculations to provide the electron density distributions of the systems. Water molecules show different electropism near positively and negatively charged SWNTs. Different density distribution patterns of water, depending on the diameter and chirality of the SWNTs, are observed inside and outside the tube wall. These special distribution patterns formed can be explained in terms of the van der Waals and electrostatic interactions between the water molecules and the carbon atoms on the hexagonal network of carbon nanotubes. The electric field produced by the highly charged SWNTs leads to high filling speed of water molecules, while it prevents them from flowing out of the nanotube. Water molecules enter the neutral SWNTs slowly and can flow out of the nanotube in a fluctuating manner. It indicates that by adjusting the electric charge on the SWNTs, one can control the adsorption and transport behavior of polar molecules in SWNTs to be used as stable storage medium with template effect or transport channels. The transport rate can be tailored by changing the charge on the SWNTs.  相似文献   

8.
A method has been proposed for the formation of self-organized ensembles of carbon nanotubes with the use of coordinating cumene molecules and the development of secondary porosity in the obtained structures. It has been shown that the fraction of nanotubes coordinated into an array grows with increasing molar ratio between cumene molecules and carbon nanotubes upon the synthesis of the supramolecular structures. The secondary porosity develops due to partial desorption of the coordinating molecules from the obtained structure. A supramolecular structure with a residual cumene content of 50 wt % possesses the best adsorption characteristics for the described system. Specific adsorption of nitrogen on the “carbon nanotubes–cumene (50 wt %)” supramolecular structure at 293 K is more than an order of magnitude higher than that on the initial nanotubes. The structure-related energy parameters of the experimentally obtained supramolecular systems have been determined by molecular dynamics methods. The calculation in terms of the theory of volume filling of micropores has shown that the secondary pores of the obtained structures can accumulate methane and hydrogen in amounts as large as 213 nm3/m3 and 4 wt %, respectively.  相似文献   

9.
We describe the design, synthesis, and characterization of a supramolecular hybrid of gold nanometals and semiconducting single-walled carbon nanotubes (SWNTs) wrapped by a porphyrin-fluorene copolymer (1), as well as fabrication of a thin-film transistor (TFT) device using the hybrid. Photoluminescence mapping revealed that the copolymer selectively dissolved SWNTs with chirality indices of (8,6), (8,7), (9,7), (7,6), and (7,5); dissolution of (8,6), and (8,7) SWNTs was especially efficient. The solubilized SWNTs were connected to gold nanoparticles (AuNPs) via a coordination bond to prepare a supramolecular hybrid composed of AuNPs/copolymer 1-wrapped SWNTs, which were studied by atomic force and scanning and transmission electron microscopies. A fabricated TFT device using the semiconducting SWNTs/copolymer 1 shows evident p-type transport with an On/Off ratio of ~10(5). The transport properties of the TFT changed after coordination of the AuNPs with the SWNTs/copolymer 1.  相似文献   

10.
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution are synthesized by thermal chemical vapor deposition (CVD) of methane over Fe/MgO catalyst on the basis of parametric study considering Fe loading, reaction temperature and time, methane concentration, and structure of a support material. We found that the porous MgO support gives the SWNTs with a narrow diameter distribution with the mean diameter and standard deviation of 0.93 and 0.06 nm, respectively, only when the Fe loading and reaction temperature are relatively low. The higher Fe loading and/or the higher reaction temperature enlarged the nanotube diameter, forming double-walled carbon nanotubes (DWNTs) in addition to SWNTs. This result indicates that only the diameter of Fe nanoparticles determines the growth of either SWNTs or DWNTs on the MgO support. The fluorescence and absorption spectra of the nanotube dispersion in D(2)O solution with sodium dodecyl sulfate (SDS) were studied to identify their chirality distribution. The fluorescence of the uniform-diameter SWNTs indicates the formation of the near armchair structures. On the other hand, the SWNTs synthesized over the catalyst with a high Fe loading, 3 wt %, showed a wide chirality distribution including the near zigzag structure. The synthesis of the SWNTs with a narrow diameter distribution could be applied to the selection of SWNTs with a specific chirality based on postsynthesis separation.  相似文献   

11.
Grafting of aldehyde structures to single‐walled carbon nanotubes (SWNTs) has been carried out to endow the nanotubes with appropriate wettability. The results of Fourier transform infrared (FTIR) spectroscopy, ultraviolin‐visible‐near infrared (UV‐VIS‐NIR) spectroscopy, and Raman spectroscopy provide the supporting evidence of aldehyde structures covalently attached to SWNTs. The improved wettability of aldehyde‐functionalized SWNTs (f‐SWNTs) was demonstrated by their good dispersion in organic medium, namely, ethanol and phenolic resin. The prospective covalent bonding between aldehyde structures on the surfaces of f‐SWNTs and phenolic resin makes it possible to prepare an integrated composite with the enhanced‐interfacial adhesion. The f‐SWNT composites, therefore, show much higher average values of dσ/dWCNT and dE/dWCNT (i.e., tensile strength and Young's modulus per unit weight fraction) compared with the composites filled with pristine SWNTs or MWNTs. The respective maxima are 9680 MPa and 320 GPa. It is thus feasible for f‐SWNTs to prepare the moderately enhanced but lightweight phenolic composites. Furthermore, the incorporation of f‐SWNTs does not limit the application of phenolic resin as insulation material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6135–6144, 2009  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) have been functionalized through the wet-mechanochemical reaction method. Results from the infrared spectrum and zeta potential measurements show that the hydroxyl groups have been introduced onto the treated SWNT and DWNT surfaces. Transmission electron microscope observations revealed that the SWNTs and DWNTs were cut short after being milled. SWNTs and DWNTs with optimized aspect ratio can be obtained by adjusting the ball milling parameters. Thermal conductivity enhancement of water-based nanofluids containing treated carbon nanotubes (CNTs) shows augmentation with the increase of temperature mainly due to the effects of an ordering liquid layer forming around the chemical surfaces of CNTs. Moreover, the thicker interfacial layer of water molecules on the surfaces of CNTs with smaller diameter, such as SWNTs, is in favor of greater thermal conductivity enhancement compared with the thinner one on the surfaces of DWNTs or MWNTs with larger diameter.  相似文献   

13.
We have previously demonstrated that a designed amphiphilic peptide helix, denoted nano-1, coats and debundles single-walled carbon nanotubes (SWNTs) and promotes the assembly of these coated SWNTs into novel hierarchical structures via peptide-peptide interactions. The purpose of this study is to better understand how aromatic content impacts interactions between peptides and SWNTs. We have designed a series of peptides, based on the nano-1 sequence, in which the aromatic content is systematically varied. Atomic force microscopy measurements and optical absorption spectroscopy reveal that the ability to disperse individual SWNTs increases with increasing aromatic residues in the peptide. Altogether, the results indicate that pi-stacking interactions play an important role in peptide dispersion of SWNTs.  相似文献   

14.
Steroidal bile acids and their derivatives exhibit characteristic inclusion behaviors in the crystalline state. Their crystals present varied assemblies due to asymmetric molecular structures, which relate to supramolecular properties through cooperative weak interactions. An overview indicates that the steroidal assemblies lie in an intermediate position among various molecules and have hierarchical structures such as primary, secondary, tertiary, and host-guest assemblies like proteins. Such an interpretation brought about the idea that the assemblies with dimensionality present supramolecular chirality such as three-axial, tilt, helical, bundle, and complementary chirality. This concept of the supramolecular chirality enables us to understand formation of chiral crystals starting from the molecular chirality of the steroidal molecules.  相似文献   

15.
Helical rosette nanotubes (RNTs) are obtained through the self-assembly of the GwedgeC motif, a self-complementary DNA base analogue featuring the complementary hydrogen bonding arrays of both guanine and cytosine. The first step of this process is the formation of a 6-membered supermacrocycle (rosette) maintained by 18 hydrogen bonds, which then self-organizes into a helical stack defining a supramolecular sextuple helix whose chirality and three-dimensional organization arise from the chirality, chemical structure, and conformational organization of the GwedgeC motif. Because a chiral GwedgeC motif is predisposed to express itself asymmetrically upon self-assembly, there is a natural tendency for it to form one chiral RNT over its mirror image. Here we describe the synthesis and characterization of a chiral GwedgeC motif that self-assembles into helical RNTs in methanol, but undergoes mirror image supramolecular chirality inversion upon the addition of very small amounts of water (<1% v/v). Extensive physical and computational studies established that the mirror-image RNTs obtained, referred to as chiromers, result from thermodynamic (in water) and kinetic (in methanol) self-assembly processes involving two conformational isomers of the parent GwedgeC motif. Although derived from conformational states, the chiromers are thermodynamically stable supramolecular species, they display dominant/recessive behavior, they memorize and amplify their chirality in an achiral environment, they change their chirality in response to solvent and temperature, and they catalytically transfer their chirality. On the basis of these studies, a detailed mechanism for supramolecular chirality inversion triggered by specific molecular interactions between water molecules and the GwedgeC motif is proposed.  相似文献   

16.
Creation of higher-ordered polymeric architectures composed of alternative assemblies of single-walled carbon nanotubes (SWNTs) and fibrous porphyrin J-aggregates can be easily achieved utilizing the cationic semi-artificial polysaccharide which can act not only as a tubular host for SWNTs but also as a one-dimensional template for porphyrin molecules. This new class of hierarchical polymer assembly is formed, for the first time, by the mutual template effect of two components, i.e., the cationic SWNT complexes and the anionic porphyrin supramolecular nanofibers. In the present system, the self-assembling behaviors of the SWNT complexes as well as the final properties of the SWNT nanoarchitectures are strongly affected by the packing mode of porphyrin molecules on the cationic semi-artificial polysaccharide. Furthermore, we have confirmed that the light energy captured by the porphyrin J-aggregates is effectively transferred to SWNTs.  相似文献   

17.
Oxidized single‐walled carbon nanotubes (o‐SWNTs) were employed as the drug carriers to deliver the small molecules of Rhodamine123 (Rho123) into the K562 cells via physical adsorption. However, due to the fluorescence quenching of Rho123 on carbon nanotubes, the quantitative determination of Rho123 in cells is difficult. Based on the MEKC coupled with LIF detection, a quantitative approach was developed for the determination of Rho123 delivered into K562 cells by o‐SWNTs. Where the adsorbed Rho123 on o‐SWNTs could be desorbed by SDS in running buffer and be simultaneously separated with o‐SWNTs due to the differences of their electrophoretic mobility by applying the electric potential at the both ends of capillary. Using this approach, the intracellular uptakes of Rho123 in multidrug‐resistant and multidrug‐sensitive leukemia cells were quantified, and the results showed that o‐SWNTs could be used as the potential drug carriers to deliver small molecules into cells via the physical adsorption along with the circumventing of multidrug resistance of leukemia cells.  相似文献   

18.
In order to truly unlock advanced applications of single-walled carbon nanotubes (SWNTs), one needs to separate them according to both chirality and handedness. Here we show that the chiral d-ribityl phosphate chain of flavin mononucleotide (FMN) induces a right-handed helix that enriches the left-handed SWNTs for all suspended (n,m) species. Such enantioselectivity stems from the sp(3) hybridization of the N atom anchoring the sugar moiety to the flavin ring. This produces two FMN conformations (syn and anti) analogous to DNA. Electrostatic interactions between the neighboring uracil moiety and the 2'-OH group of the side chain provide greater stability to the anti-FMN conformation that leads to a right-handed FMN helix. The right-handed twist that the FMN helix imposes to the underlying nanotube, similar to "Indian burn", causes diameter dilation of only the left-handed SWNTs, whose improved intermolecular interactions with the overlaying FMN helix, impart enantioselection.  相似文献   

19.
Nanomaterials with helical morphologies have attracted much attention owing to their potential applications as nanosprings, chirality sensors and in chiral optics. Single‐handed helical Ta2O5 nanotubes prepared through a supramolecular templating approach are described. The handedness is controlled by that of the organic self‐assemblies of chiral low‐molecular‐weight gelators (LMWGs). The chiral LMWGs self‐assemble into single‐handed twisted nanoribbons through H‐bonding, hydrophobic association, and π‐π stacking. The Ta2O5 nanotubes are formed by the adsorption and polycondensation of Ta2O5 oligomers on the surfaces and edges of the twisted organic nanoribbons followed by removal of the template. The optical activity of the nanotubes is proposed to originate from the chiral defects on the inner surfaces of the tubular structures. Single‐handed twisted LiTaO3 nanotubes can also be prepared using Ta2O5 nanotubes.  相似文献   

20.
Many applications based on single-walled carbon nanotubes (SWNTs) require chemical modification of carbon nanotube to optimize the functionalities of the device. In this contribution we discuss the properties of SWNTs immersed in a hydrobromic acid (HBr) solution. Changes of atomic and electronic structures of bromine modified SWNTs were investigated using photoelectron spectroscopy (PES). Spectra of SWNTs before and after immersion in the HBr solution exhibit different features. To understand the mechanism of interaction between SWNTs and bromine, we performed density-functional theory calculations to reveal the structural changes, adsorption energy and chemical bonding information of SWNTs interacting with bromine. In addition, based on the Gelius model, from the molecular orbitals (MOs), we calculated ultraviolet photoelectron spectra (UPS) of SWNTs with and without functionalizing and compared them with the experiment. The present study is a first step in the understanding of the functionalization mechanism of carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号