首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new quinoline and di-tert-butyl phenothiazine isomeric derivatives were synthesized and characterized towards applications for oxygen sensing and optical information multicoding. The compounds with phenylene linker showed outstanding phase-dependent reversibility between ON/OFF states (low and high emission intensity, drastic shifting of emission colors, short- and long-lived fluorescence) in systematic grinding/fuming cycles, as required for multichannel memory devices based on optical information multicoding. The conformational diversity of the phenothiazine unit resulted in dual emission of the doped films implemented by the different luminescence mechanisms with peaks located at 414/530, 416/540, and 440/582 nm. The presence of a phenylene linker and thus two rotational degrees of freedom resulted in quenching of the delayed fluorescence of quasi-equatorial conformers in the solid state. The compound containing no phenylene bridge was characterized by two different driving photoluminescence mechanisms of the doped films: short fluorescence of the quasi-axial conformer and thermally activated delayed fluorescence of the quasi-equatorial form. This compound showed oxygen sensitivity with a Stern–Volmer constant of 7.5×10−4 ppm−1.  相似文献   

2.
A novel thiophene-bridged donor–acceptor system was synthesized with a carbazole as donor and a borole as acceptor unit. The borole group was successfully installed via the tin–boron exchange reaction of 1,1-dimethyl-2,3,4,5-tetraphenylstannole with 9-(5-(dibromoboryl)thiophen-2-yl)carbazole. The effect of the borole on the optoelectronic properties of the donor–acceptor system was explored by spectroscopic (UV/Vis and fluorescence spectroscopy), electrochemical (cyclic voltammetry) and theoretical (TD-DFT) methods as well as by modifying its structure. The corresponding donor–acceptor compound bearing the widely employed dimesitylboryl acceptor group was also synthesized for comparison.  相似文献   

3.
A series of donor–acceptor–donor triazine-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain highly efficient blue-emitting OLEDs with non-doped emitting layers (EMLs). The targeted molecules use a triazine core as the electron acceptor, and a benzene ring as the conjugated linker with different electron donors to alternate the energy level of the HOMO to further tune the emission color. The introduction of long alkyl chains on the triazine core inhibits the unwanted intermolecular D –D/A–A-type π–π interactions, resulting in the intermolecular D–A charge transfer. The weak aggregation-caused quenching (ACQ) effect caused by the suppressed intermolecular D –D/A–A-type π–π interaction further enhances the emission. The crowded molecular structure allows the electron donor and acceptor to be nearly orthogonal, thereby reducing the energy gap between triplet and singlet excited states (ΔEST). As a result, blue-emitting devices with TH-2DMAC and TH-2DPAC non-doped EMLs showed satisfactory efficiencies of 12.8 % and 15.8 %, respectively, which is one of the highest external quantum efficiency (EQEs) reported for blue TADF emitters (λpeak<475 nm), demonstrating that our tailored molecular designs are promising strategies to endow OLEDs with excellent electroluminescent performances.  相似文献   

4.
Linking a polarized coumarin unit with an aromatic substituent via an amide bridge results in weak electronic coupling that affects the intramolecular electron-transfer (ET) process. As a result of this, interesting solvent-dependent photophysical properties can be observed. In polar solvents, electron transfer in coumarin derivatives of this type induces a mutual twist of the electron-donating and -accepting molecular units (TICT process) that facilitates radiationless decay processes (internal conversion). In the dyad with the strongest intramolecular hydrogen bond, the planar form is stabilized, such that twisting can only occur in highly polar solvents, whereas a fast proton-coupled electron-transfer (PCET process) occurs in nonpolar n-alkanes. The kPCET rate constant decreases linearly with the energy of the fluorescence maximum in different solvents. This observation can be explained in terms of competition between electron- and proton-transfer from a highly polarized (ca. 15 D) and fluorescent locally excited (1LE) state to a much less polarized (ca. 4 D) charge-transfer (1CT) state, a unique occurrence. Photophysical measurements performed for a family of related coumarin dyads, together with results of quantum-chemical computations, give insight into the mechanism of the ET process, which is followed by either a TICT or a PCET process. Our results reveal that dielectric solvation of the excited state slows down the PCET process, even in nonpolar solvents.  相似文献   

5.
Two L ‐phenylalanine derivatives with 5,8‐bis(2‐(carbazol‐3‐yl)vinyl)quinoxaline ( PCQ ) and 5,8‐bis[2‐(carbazol‐3‐yl)]‐2,3‐dimethylquinoxaline ( DCQ ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self‐assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ . The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ . Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively.  相似文献   

6.
To study the electronic interactions in donor-acceptor (D-A) ensembles, D and A fragments are coupled in a single molecule. Specifically, a tetrathiafulvalene (TTF)-fused dipyrido[3,2-a:2',3'-c]phenazine (dppz) compound having inherent redox centers has been synthesized and structurally characterized. Its electronic absorption, fluorescence emission, photoinduced intramolecular charge transfer, and electrochemical behavior have been investigated. The observed electronic properties are explained on the basis of density functional theory.  相似文献   

7.
Unprecedented ambient triplet-mediated emission in core-substituted naphthalene diimide (cNDI) derivatives is unveiled via delayed fluorescence and room temperature phosphorescence. Carbazole core-substituted cNDIs, with a donor–acceptor design, showed deep-red triplet emission in solution processable films with high quantum yield. This study, with detailed theoretical calculations and time-resolved emission experiments, enables new design insights into the triplet harvesting of cNDIs; an important family of molecules which has been, otherwise, extensively been investigated for its n-type electronic character and tunable singlet fluorescence.  相似文献   

8.
3,6-Bis(arylethynyl)pyrrolo[3,2-b]pyrroles were synthesized through a two-step procedure involving double direct alkynylation of the electron-rich core followed by Sonogashira coupling. In comparison with the parent tetraarylo-pyrrolo[3,2-b]pyrroles and benzo-fused pyrrolopyrroles, these new dyes showed moderately redshifted absorption. Almost all derivatives showed positive fluorescence solvatochromism and, for the first time, red-emitting pyrrolopyrroles were obtained. Computational studies revealed that, in most cases, there is negligible change in the geometry between ground and excited states. Interestingly, there was a fundamental difference between pyrrolopyrroles possessing electron-withdrawing substituents at positions 2 and 5 and their analogs lacking these substituents. The former dyes behaved like dipolar chromophores with the lowest excited state both one-photon and two-photon allowed, which corresponds to intramolecular charge transfer occurring along the branches perpendicular to the pyrrolopyrrole long axis. In compounds lacking electron-withdrawing substituents at positions 2 and 5, intramolecular charge transfer took place along the long axis of pyrrolopyrrole and consequently the one-photon transitions are not two-photon allowed. Despite displaying quadrupolar core-to-peripheral intramolecular charge transfer, these derivatives showed two-photon absorption cross sections in the NIR1 region comparable to tetraaryl-pyrrolo[3,2-b]pyrroles lacking π-expansion (up to about 500 GM).  相似文献   

9.
Benzofurocarbazole moieties are commonly used donor structures in the design of thermally activated delayed fluorescence (TADF) emitters. However, only 5 H-benzofuro[3,2-c]carbazole (34BFCz) has been reported and, to the best of our knowledge, no other benzofurocarbazole derivatives have been covered in the literature. In the present study, two further benzofurocarbazole moieties, 12 H-benzofuro[3,2-a]carbazole (12BFCz) and 7 H-benzofuro[2,3-b]carbazole (23BFCz), have been synthesized to investigate the effect of the donor structure on the photophysics and device parameters of TADF emitters. Two benzofurocarbazole-derived TADF emitters, 12-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12 H-benzofuro[3,2-a]carbazole (o12BFCzTrz) and 7-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-7 H-benzofuro[2,3-b]carbazole (o23BFCzTrz), have been compared with 5-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5 H-benzofuro[3,2-c]carbazole (oBFCzTrz). The benzofurocarbazole donor structure governs the TADF characteristics, such as charge-transfer property and emission color. The 12BFCz donor has proved to be effective in blue-shifting the emission color, and 34BFCz has proven useful for improving the external quantum efficiency (EQE). The 12BFCz-derived o12BFCzTrz showed blue-shifted color coordinates of (0.159, 0.288), compared to (0.178, 0388) for o23BFCzTrz and (0.169, 0.341) for oBFCzTrz. The 34BFCz-derived oBFCzTrz exhibited an EQE of 22.9 %, compared to 19.2 % for o12BFCzTrz and 21.1 % for o23BFCzTrz.  相似文献   

10.
Triindolo-truxene, a C3-symmetric molecule with a large π-conjugated plane, has six methylene carbon atoms and three aromatic carbon atoms that can be facilely functionalized. Herein, butyl, carbonyl, cyano, and/or malononitrile groups were introduced at six methylene carbon atoms (6-, 14-, 22- or 8-, 16-, 24-positions) and/or three aromatic carbon atoms (2-, 10-, and 18-positions) of triindolo-truxene to produce eight derivatives. Their photophysical properties, electrochemical properties, and molecular assembly can be effectively modulated by substituents and substitution patterns. Incorporation of electron-deficient groups led to redshifts in both the absorption and emission of these derivatives and also lowered their HOMO and LUMO levels. Different substitution patterns resulted in the different intramolecular donor–acceptor interactions. Electron-deficient substituents at the methylene carbon atoms in the 6-, 14-, and 22-positions led to intramolecular charge transfer from the fluorene arms to the truxene core, whereas the corresponding substitutions at the methylene carbon atoms in the 8-, 16-, and 24-positions resulted in intramolecular charge transfer from the truxene core to the fluorene arms. The molecular packing in single crystals and molecular aggregation in solution are also influenced by the substituents and substitution patterns. This work provides a straightforward strategy to alter the properties of triindolo-truxene.  相似文献   

11.
A series of two-coordinate AuI and CuI complexes ( 3 a , 3 b and 5 a , 5 b ) are reported as new organometallic thermally activated delayed fluorescence (TADF) emitters, which are based on the carbene–metal–carbazole model with a pyridine-fused 1,2,3-triazolylidene (PyTz) ligand. PyTz features low steric hindrance and a low-energy LUMO (LUMO=−1.47 eV) located over the π* orbitals of the whole ligand, which facilitates intermolecular charge transfer between a donor (carbazole) and an accepter (PyTz). These compounds exhibit efficient TADF with microsecond lifetimes. Temperature-dependent photoluminescence kinetics of 3 a supports a rather small energy gap between S1 and T1E =60 meV). Further experiments reveal that there are dual-emission properties from a monomer–dimer equilibrium in solution, exhibiting single-component multicolor emission from blue to orange, including white-light emission.  相似文献   

12.
Cycloadditions of strained carbocycles promoted by Lewis acids are powerful methods to construct heterocyclic frameworks. In fact, the formal [3+2] cycloadditions of donor–acceptor (DA) cyclopropanes with nitriles has seen particular success in synthesis. In this work, we report on the first [4+2] cycloaddition of nitriles with DA cyclobutanes by Lewis acid activation. Tetrahydropyridine derivatives were obtained in up to 91 % yield from various aryl-activated cyclobutane diesters and aliphatic or aromatic nitriles.  相似文献   

13.
Six pyrimidine-based push–pull systems substituted at positions C2 and C4/6 with phenylacridan and styryl moieties, employing methoxy or N,N-diphenylamino donors, have been designed and synthesized through cross-coupling and Knoevenagel reactions. X-ray analysis confirmed that the molecular structure featured the acridan moiety arranged perpendicularly to the residual π system. Photophysical studies revealed significant differences between the methoxy and N,N-diphenylamino chromophores. Solvatochromic studies revealed that the methoxy derivatives showed dual emission in polar solvents. Time-resolved spectroscopy revealed that the higher energy band involved very fast (<80 ps) fluorescence, whereas the lower energy one included long components (≈30 ns) due to long-lived intramolecular charge-transfer fluorescence. In contrast to N,N-diphenylamino chromophores, the methoxy derivatives also showed aggregation-induced emission in mixtures of THF/water, as well as dual emission in thin films, covering almost the whole visible spectrum with corresponding chromaticity coordinates not far from that of pure white light. These properties render the methoxy derivatives as very promising organic materials for white organic light-emitting diodes.  相似文献   

14.
A search for novel organic luminogens led us to design and synthesize some N‐fused imidazole derivatives based on imidazo[1,2‐a]pyridine as the core and arylamine and imidazole as the peripheral groups. The fluorophores were synthesized through a multicomponent cascade reaction (A3 coupling) of a heterocyclic azine with an aldehyde and alkyne, followed by Suzuki coupling and a multicomponent cyclization reaction. All of the compounds exhibited interesting photophysical responses, especially arylamine‐containing derivatives, which displayed strong positive solvatochromism in the emission spectra that indicated a more polar excited state owing to an efficient charge migration from the donor arylamine to the imidazo[1,2‐a]pyridine acceptor. The quantum yields ranged from 0.2 to 0.7 and depended on the substitution pattern, most notably that based on the donor group at the C2 position. Moreover, the influence of general and specific solvent effects on the photophysical properties of the fluorophores was discussed with four‐parameter Catalán and Kamlet–Taft solvent scales. The excellent thermal, electrochemical, and morphological stability of the compounds was explored by cyclic voltammetry, thermogravimetric analysis, and AFM methods. Furthermore, to understand the structure, bonding, and band gap of the molecules, DFT calculations were performed. The performance of the electroluminescence behavior of the imidazo[1,2‐a]pyridine derivative was investigated by fabricating a multilayer organic light‐emitting diode with a configuration of ITO/NPB (60 nm)/EML (40 nm)/BCP (15 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al(100 nm) (ITO=indium tin oxide, EML=emissive layer, BCP=2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline, Alq3=tris(8‐hydroxyquinolinato)aluminum), which exhibited white emission with a turn‐on voltage of 8 V and a brightness of 22 cd m?2.  相似文献   

15.
A series of donor–π–acceptor–π–donor (D -π-A-π-D) benzoazole dyes with 2H-benzo[d][1,2,3]triazole or BTD cores have been prepared and their photophysical properties characterized. The properties of these compounds display remarkable differences, mainly as a result of the electron-donor substituent. Dyes with the best properties have visible-light absorption over λ=400 nm, large Stokes shifts in the range of about 3500–6400 cm−1, and good fluorescence emission with quantum yields of up to 0.78. The two-photon absorption properties were also studied to establish the relationship between structure and properties in the different compounds synthesized. These results provided cross sections of up to 1500 GM, with a predominance of S2←S0 transitions and a high charge-transfer character. Time-dependent DFT calculations supported the experimental results.  相似文献   

16.
Quinoxaline (Q), pyrido[2,3-b]pyrazine (PP) and pyrido[3,4-b]pyrazine (iPP) are used as electron acceptors (A) to design a series of D–π–A-type light-emitting materials with different donor (D) groups. By adjusting the molecular torsion angles through changing D from carbazole (Cz) to 10-dimethylacridine (DMAC) or 10H-phenoxazine (PXZ) for a fixed A, the luminescence is tuned from normal fluorescence to thermally activated delayed fluorescence (TADF). By gradually enhancing the intramolecular charge-transfer extent through combining different D and A, the emission color is continuously and regularly tuned from pure blue to orange–red. Organic light-emitting diodes (OLEDs) containing these compounds as doped emitters exhibit bright electroluminescence with emission colors covering the entire visible-light range. An external quantum efficiency (ηext) of 1.2 % with excellent color coordinates of (0.16, 0.07) is obtained for the pure-blue OLED of Q-Cz. High ηext values of 12.9 (35.9) to 16.7 % (51.9 cd A−1) are realized in the green, yellow, and orange–red TADF OLEDs. All PP- and iPP-based TADF emitters exhibit superior efficiency stabilities to that of analogues of Q. This provides a practical strategy to tune the emission color of Q, PP, and iPP derivatives with the same molecular skeletons over the entire visible-light range.  相似文献   

17.
Blue thermally activated delayed fluorescent (TADF) devices with short excited-state lifetime, high reverse intersystem crossing rate, and low-efficiency roll-off were developed by managing the molecular structure of donor–acceptor-type blue emitters. Three isomers of blue TADF emitters with a diphenyltriazine acceptor and three carbazole donors were synthesized. The position of the donor moieties in the phenyl linker connecting the donor and acceptor moieties was controlled to devise compounds with a short delayed fluorescence lifetime. A blue TADF emitter with three carbazole donors at 2-, 3-, and 4- positions of a phenyl linker shortened the excited state lifetime to 4.1 μs, showed a high external quantum efficiency of 20.4 %, and low efficiency roll-off of less than 10 % at 1000 cd m−2. Therefore, a molecular design distorting the donors by aligning them in a consecutive way is useful to resolve the issues of long delayed fluorescence lifetime and efficiency roll-off of blue TADF devices.  相似文献   

18.
A new benzoazacrown ether fluorescence sensor was synthesized with 9-anthrylmethyl chloride and benzoaza-15-crown-5 in CH3CN, which particularly shows a strong affinity for Zn^2 .Its fluorescence quantum yield increase more than one order of magnitude and a red shift could be noticed when passing from the apolar to the polar solvent.  相似文献   

19.
N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)–π–A compounds 1 – 3 . In addition, an enamine π-donor analogue ( 4 ) was synthesized for comparison. UV–visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1 – 4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3 , =−0.40 V vs. ferrocene/ferrocenium, Fc/Fc+, in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1 – 3 are much more destabilized than that of the enamine-containing 4 , which confirms the stronger donating ability of NHOs.  相似文献   

20.
One pair of isomers, centrosymmetric anti- Py - 1 and axisymmetric syn- Py - 2 , was designed and synthesized with an acceptor–donor–acceptor (A–D–A) structure by choosing dithienocyclopentapyrene with four 4-hexylphenyl side chains as the D unit, and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile as the A unit. In-depth structure–property relationship studies revealed that the isomers have similar UV/Vis absorption, fluorescence emission, and energy levels but significant differences in molecular shape, polarity, and charge mobility. Solution-processed bulk-heterojunction (BHJ) small-molecule organic solar cells with Py - 1 as the electron-acceptor material and PTB7-Th as the electron-donor material exhibit a power conversion efficiency (PCE) of 6.07 %, or 60 % higher than that of Py - 2 (3.7 %), which could be mainly attributed to the higher and more balanced hole/electron mobilities and better phase separation of the Py - 1 -based active layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号