首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于静电作用, 阴离子表面活性剂可与阳离子聚铵组装形成复合胶束. 借助阳离子聚铵,复合胶束可以作为模板与硅源协同组装, 形成高度有序的介孔二氧化硅. 本文通过调变不同种类阴离子表面活性剂、合成体系pH值、合成温度及阳离子聚铵和硅源用量等因素, 合成了具有不同介观结构和形貌的介孔二氧化硅. 实验证实阴离子表面活性剂/阳离子聚铵复合胶束模板法是合成介孔二氧化硅的一种通用方法.  相似文献   

2.
1H NMR chemical shifts of the protons in the vinyl groups of monomers are correlated with their reactivities in anionic, coordinated anionic, and cationic polymerizations. The relative reactivities of styrenes in anionic addition reactions with living polystyrene increase linearly with the chemical shift of the proton trans to the substituent (δH1). Only the plot for 2,4,6-trimethylstyrene deviates very much from the linear relation because of the large steric hindrance. The relative reactivities of methacrylates in anionic copolymerizations increase with increasing chemical shifts of protons attached to the β-carbon of methacrylates. In cationic polymerizations of styrenes, the relative reactivities decrease with increasing δH1. The relative reactivities in coordinated anionic polymerizations with Ti-containing Ziegler initiators show a typical feature of cationic polymerization, and those with V-containing initiators show a typical feature of anionic polymerization, indicating the importance of the coordination process in the propagation reaction with Ti-containing initiator systems. From the results, it can be concluded that the chemical shifts of the protons attached to the β-carbon of vinyl monomers can be used as a practical measure of the reactivity of vinyl monomers in ionic polymerizations and also as a tool for understanding the mechanism of polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2134–2147, 2002  相似文献   

3.
The 3,3', 4',7 tetrahydroxiflavone (fisetin) is a natural therapeutically active and fluorescent polyhydroxyflavone, with important spectroscopic and biological behavior. Fisetin shows dual emission, with a normal band (N) from the S1 --> S0 transition and the one generated in the excited state (phototautomer; PT) from the intramolecular proton transfer (ESIPT) process. The influence of different interfaces on the ESIPT process of fisetin was investigated in reverse micelles media (RMs) made of the anionic sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) and cationic benzyl n-hexadecyl dimethylammonium chloride (BHDC) surfactants, in benzene. The studies were carried out by absorption, emission spectroscopy, steady-state anisotropy and time-resolved fluorescence measurements. Fisetin behavior was also investigated in homogeneous media with special emphasis in water and benzene, which are the polar core and the organic pseudofase in the RMs, respectively. In addition, the effect of concentration in benzene and the variation of the pH in water were studied. Fluorescence lifetime measurements show that in water the ESIPT process is independent on the concentration, while in benzene it was possible to detect fluorescent aggregate species (Nas) formed in the ground state. The effect of the pH in water allowed us to identify the anionic fisetin (A-) emission. The studies in RMs show that fisetin interacts specifically with the head of the surfactants, which always results in diminishing the emission of the PT. Also the formation of A- is detected particularly at W0 > 0. Appreciable high anisotropy values are obtained in RMs, as compared with those in fluid homogeneous media, which are independent of the water content confirming that fisetin molecules are anchored in the anionic as well as in the cationic interfaces.  相似文献   

4.
The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.  相似文献   

5.
表面活性剂双水相界面性质的研究   总被引:2,自引:0,他引:2  
表面活性剂双水相是指正、负离子表面活性剂混合水溶液在一定浓度及混合比 范围内,自发分离形成的两个互不相溶的水相。前文报道了将其作为一种新型萃取 体系,用于生物活性物质的分离。目前有关其相行为、化学物质和生物大分子的分 配方面已有较多研究,但未见两相之间界面化学性质研究的报道。表面活性剂双水 相的形成是一种奇特的相分离现象,两个稀水溶液(含水量可高达99%以上)互不 相溶、平衡共存,其界面结构和界面张力必有其特殊性。  相似文献   

6.
NMR spectroscopy was used to characterize the binding of the chiral compound 1,1′‐binaphthyl‐2,2′‐diyl hydrogen phosphate (BNP) to five molecular micelles with chiral dipeptide headgroups. Molecular micelles have covalent linkages between the surfactant monomers and are used as chiral mobile phase modifiers in electrokinetic chromatography. Nuclear overhauser enhancement spectroscopy (NOESY) analyses of (S)‐BNP:molecular micelle mixtures showed that in each solution the (S)‐BNP interacted predominately with the N‐terminal amino acid of the molecular micelle's dipeptide headgroup. NOESY spectra were also used to generate group binding maps for (S)‐BNP:molecular micelle mixtures. In these maps, percentages are assigned to the (S)‐BNP protons to represent the relative strengths of their interactions with a specified molecular micelle proton. All maps showed that (S)‐BNP inserted into a previously reported chiral groove formed between the molecular micelle's dipeptide headgroup and hydrocarbon chain. In the resulting intermolecular complexes, the (S)‐BNP protons nearest to the analyte phosphate group were found to point toward the N‐terminal Hα proton of the molecular micelle headgroup. Finally, pulsed field gradient NMR diffusion experiments were used to measure association constants for (R) and (S)‐BNP binding to each molecular micelle. These K values were then used to calculate the differences in the enantiomers' free energies of binding, Δ(ΔG). The NMR‐derived Δ(ΔG) values were found to scale linearly with electrokinetic chromatography (EKC) chiral selectivities from the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4.  相似文献   

8.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

9.
Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors.  相似文献   

10.
The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 2-(2'-furyl)-3-hydroxychromone (FHC) was studied in micelles by time-resolved fluorescence. The proton-transfer dynamics of FHC was found to be sensitive to the hydration and charge of the micelles, demonstrated through a decrease of the ESIPT rate constant (k(PT)) in the sequence cationic → nonionic → anionic micelles. A remarkably slow ESIPT with a time constant (τ(PT)) of ~100 ps was observed in the anionic sodium dodecyl sulfate and sodium tetradecyl sulfate micelles, whereas it was quite fast (τ(PT) ≈ 15 ps) in the cationic cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide micelles. In the nonionic micelles of Brij-78, Brij-58, Tween-80, and Tween-20, ESIPT occurred with time constants (τ(PT) ≈ 35-65 ps) intermediate between those of the cationic and anionic micelles. The slower ESIPT dynamics in the anionic micelles than the cationic micelles is attributed to a relatively stronger hydration of the negatively charged headgroups of the former than the positively charged headgroups of the latter, which significantly weakens the intramolecular hydrogen bond of FHC in the Stern layer of the anionic micelles compared to the latter. In addition, electrostatic attraction between the positively charged -N(CH(3))(3)(+) headgroups and the negatively charged 4-carbonyl moiety of FHC effectively screens the intramolecular hydrogen bond from the perturbation of water molecules in the micelle-water interface of the cationic micelles, whereas in the anionic micelles, this screening of the intramolecular hydrogen bond is much less efficient due to an electrostatic repulsion between its negatively charged -OSO(3)(-) headgroups and the 4-carbonyl moiety. As for the nonionic micelles, a moderate level of hydration, and the absence of any charged headgroups, causes an ESIPT dynamics faster than that of the anionic but slower than that of the cationic micelles. Furthermore, the ESIPT rate decreased with a decrease of the hydrophobic chain length of the surfactants due to the stronger hydration of the micelles of shorter chain surfactants than those of longer chain surfactants, arising from a less compact packing of the former surfactants compared to the latter surfactants.  相似文献   

11.
The adsorption kinetics of micellar solutions of anionic/cationic SDS/DATB mixtures with mixing ratios of 10/1 and 10/2, respectively, are studied experimentally by means of the maximum bubble pressure method. For long adsorption times the adsorption of the highly surface-active anionic/cationic complex leads to a decrease of dynamic surface tension in comparison to the single SDS system. However, the situation is the reverse for short adsorption times where the dynamic surface tension is increased by addition of the cationic surfactant, although the overall concentration is increased. This unexpected behavior is explained by partial solubilization of free SDS molecules into micelles formed by SDS/DTAB complexes. With increasing overall concentration, when eventually the CMC of SDS is reached, the anionic/cationic complex itself is solubilized by SDS micelles. Finally, no complex micelles, which for their part can solubilize an excess of SDS molecules, are present. Hence, the dynamic properties of the solution are no longer influenced by the depletion of SDS molecules and the mixture tends to behave like a pure SDS solution.  相似文献   

12.
Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.  相似文献   

13.
A new kind of fluorescence probe, a fluorophore-labeled anionic surfactant, sodium 12-(N-dansyl)amino-dodecanate (12-DAN-ADA), was designed and synthesized. The applications of 12-DAN-ADA as a fluorescence probe in molecular assemblies, especially in the transitions between micelles and vesicles, were investigated systematically. It was found that 12-DAN-ADA can efficiently differentiate the two different aggregate types (shapes) in mixed cationic and anionic surfactant systems and double-chain cationic surfactant systems. Experimental results showed that the fluorescence anisotropy of 12-DAN-ADA increased sharply, the emission maxima became blue-shifted, and the fluorescence lifetime rose notably when the aggregates transformed from micelles to vesicles in mixed cationic and anionic surfactant systems. The fluorescence anisotropy can also distinguish different aggregate types in single-component double-chain cationic surfactant systems. Further studies demonstrated that 12-DAN-ADA is a more useful probe of transitions between micelles and vesicles than commonly used fluorescence probes, such as pyrene and 1,6-diphenyl-1,3,5-hexatriene (DPH).  相似文献   

14.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

15.
The photophysics and photochemistry of 1,8-acridinedione dyes, which are analogues of reduced nicotinamide adenine dinucleotide (NADH), are studied in anionic and cationic micelles. Acridinedione dyes (ADDs) are solubilized in micelles at the micelle-water interface and are in equilibrium between the aqueous and micellar phase. The binding of the ADDs with micelles is attributed to hydrophobic interactions and the binding constants are determined with steady-state and time-resolved techniques. Nanosecond laser flash photolysis studies are carried out in aqueous, anionic, and cationic micellar solutions. The ADD undergoes photoionization in the excited state to give a solvated electron. The solvated electron reacts with the ADD to give an anion radical. In anionic micelles, the yield of the solvated electron increases because of the efficient separation of the cation radical and the electron. Cation radicals derived from the photooxidation of ADDs are involved in keto-enol tautomerization. Under acidic conditions, an enol radical cation of the acridinedione dye is formed from the keto form of the cation radical by intramolecular hydrogen atom transfer. In cationic micelles, due to electrostatic attraction, the electron cannot escape from the micelle and recombination of the cation radical and the electron results in the formation of a triplet state. For the first time, a solvated electron is observed in the laser flash photolysis of ADDs in anionic micelles. The photoionization of ADDs depends on the excitation wavelength and is biphotonic at 355 nm and monophotonic at 248 nm. From the results with this NADH model compound, the sequential electron-proton-electron transfer oxidation of NADH is confirmed and the nature of the intermediates involved in the oxidation is unraveled; these intermediates are found to depend on the pH value of the medium.  相似文献   

16.
We report on the detection of micellar growth in anionic, cationic, and catanionic surfactant systems using a novel surfactant type fluorescence probe, sodium 12-(N-dansyl)amino-dodecanate (12-DAN-ADA). The fluorescent group was incorporated in the tail of the surfactant which tethers the fluorescent group deep inside the apolar micellar cores. The fluorescence anisotropy of 12-DAN-ADA was found to be very sensitive for directly detecting the micellar growth in micelles containing oppositely charged surfactants, including cationic CTAB systems and mixed systems of oppositely charged surfactants (DEAB/SDS); in regard to the like charged SDS micellar systems, the sensitivity can be greatly enhanced by addition of a water soluble quencher which quenches the background fluorescence from the equilibrium population of free 12-DAN-ADA.  相似文献   

17.
Enzyme-mediated catalysis is attributed to enzyme–substrate interactions, with models such as “induced fit” and “conformational selection” emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the “conformational selection” fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an “induced fit” mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of “conformational selection”, whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an “induced fit” mechanism for the formation of the final enzyme–substrate complex. The role of water dynamics in dictating the mechanism of enzyme–substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the “conformational selection” pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the “induced fit” mechanism in the enzyme–substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.  相似文献   

18.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

19.
燃料电池聚合物电解质膜   总被引:1,自引:0,他引:1  
张宏伟  周震涛 《化学进展》2008,20(4):602-619
本文简要介绍了聚电解质膜燃料电池的定义、分类、工作原理及其特点,综述了国内外在燃料电池聚电解质领域的最新成果。对质子传导率与甲醇渗透系数的关系进行了初步探讨,详细评述了近年来AAPEM和ACPEM这两类聚电解质膜的研究进展,并对今后的研究趋势作了展望。  相似文献   

20.
Steady-state and time-resolved emission spectroscopic techniques have been employed to characterize the drug species of dibucaine and to identify its location in micellar Triton X-100 (neutral), hexadecyltrimethyl ammonium bromide (cationic) and lithium dodecyl sulfate (anionic) solutions at 77 K. Under physiological conditions, the dibucaine is shown to exist in the free base form (D) while solubilized in the hydrocarbon core of neutral micelles. In cationic micellar solution, dibucaine exists as the monocation species (DH+) where the anesthetic is solubilized in the extramicellar aqueous solution and D is solubilized in the hydrophobic region with close proximity to the micellar interface. In the anionic micelles, interfacial solubilization is most consistent with a site in which the tertiary amino group of the monocation dibucaine (DH+) is anchored at the micellar interface with its quinoline analog penetrating the hydrophobic region. The distinct properties observed for the drug species (i.e. D and DH+) and their solubilization sites in micelles are consistent with a balance between hydrophobic forces, surface polarity and the interfacial electrostatic potential present in the micellar solubilization sites. These observations could lend insight into the molecular basis of pharmacological action, in particular the mechanism of local anesthetic drug transport across membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号