首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The 29Si NMR spectra of six silanols and four silylamines were examined in several solvents of varying electron pair donor ability. A linear correlation was found between the silanol silicon-29 chemical shift and solvent donor ability. The silylamines were considerably less sensitive to solvent. The effect is attributed to hydrogen bonding between the hydroxyl proton of the silanol and an electron pair of the solvent.  相似文献   

2.
H-bond donor catalysts able to modulate the reactivity of ionic substrates for asymmetric reactions have gained great attention in the past years, leading to the development of cooperative multidentate H-bonding supramolecular structures. However, there is still a lack of understanding of the forces driving the ion recognition and catalytic performance of these systems. Herein, insight into the cooperativity nature, anion binding strength, and folding mechanism of a model chiral triazole catalyst is presented. Our combined experimental and computational study revealed that multi-interaction catalysts exhibiting weak binding energies (≈3–4 kcal mol−1) can effectively recognize ionic substrates and induce chirality, while strong dependencies on the temperature and solvent were quantified. These results are key for the future design of catalysts with optimal anion binding strength and catalytic activity in target reactions.  相似文献   

3.
4.
5.
Oligomers equipped with complementary recognition units have the potential to encode and express chemical information in the same way as nucleic acids. The supramolecular assembly properties of m-phenylene ethynylene polymers equipped with H-bond donor (D = phenol) and H-bond acceptor (A = phosphine oxide) side chains have been investigated in chloroform solution. Polymerisation of a bifunctional monomer in the presence of a monofunctional chain stopper was used for the one pot synthesis of families of m-phenylene ethynylene polymers with sequences ADnA or DAnD (n = 1–5), which were separated by chromatography. All of the oligomers self-associate due to intermolecular H-bonding interactions, but intramolecular folding of the monomeric single strands can be studied in dilute solution. NMR and fluorescence spectroscopy show that the 3-mers ADA and DAD do not fold, but there are intramolecular H-bonding interactions for all of the longer sequences. Nevertheless, 1 : 1 mixtures of sequence complementary oligomers all form stable duplexes. Duplex stability was quantified using DMSO denaturation experiments, which show that the association constant for duplex formation increases by an order of magnitude for every base-pairing interaction added to the chain, from 103 M−1 for ADA·DAD to 105 M−1 for ADDDA·DAAAD. Intramolecular folding is the major pathway that competes with duplex formation between recognition-encoded oligomers and limits the fidelity of sequence-selective assembly. The experimental approach described here provides a practical strategy for rapid evaluation of suitability for the development of programmable synthetic polymers.

One pot oligomerisation reactions give access to families of oligomers that allow facile analysis of folding propensity and assessment of suitability for sequence-selective duplex formation.  相似文献   

6.
Quantum-chemical calculations of molecular complexes simulating the proton channel of influenza A virus and the proton-transfer system of the active site of carboanhydrase enzyme were performed. These complexes comprise a proton-donor and a proton-acceptor groups bridged by a chain of water molecules. Calculations of the methylimidazole (H+)-H2O-CH3COO? complex as a model of influenza M2 virus revealed free translation motion of the water molecule between the donor and acceptor, as well as concerted proton transfer in both H bonds. The barrier for proton transfer is independent of the position of the bridging water molecule and varies linearly with the difference in the electrostatic potentials between the donor and acceptor. With elongation of the H-bond bridge between the donor and acceptor groups, the H-bond lengths and proton shifts in the chain links vary periodically. This process can be defined as an H-bond deformation wave (proton wave). It was shown that motion of one proton along the H bond is associated with vibrational motion of protons in other links, which results in wave propagation along the chain. The calculation results allowed the rate of the proton wave and the time of proton transfer from the donor to acceptor to be estimated.  相似文献   

7.
The 1H nuclear magnetic resonance (1H-NMR) spectrum is a useful tool for characterizing the hydrogen bonding (H-bonding) interactions in ionic liquids (ILs). As the main hydrogen bond (H-bond) donor of imidazolium-based ILs, the chemical shift (δH2) of the proton in the 2-position of the imidazolium ring (H2) exhibits significant and complex solvents, concentrations and anions dependence. In the present work, based on the dielectric constants (ϵ) and Kamlet-Taft (KT) parameters of solvents, we identified that the δH2 are dominated by the solvents polarity and the competitive H-bonding interactions between cations and anions or solvents. Besides, the solvents effects on δH2 are understood by the structure of ILs in solvents: 1) In diluted solutions of inoizable solvents, ILs exist as free ions and the cations will form H-bond with solvents, resulting in δH2 being independent with anions but positively correlated with βS. 2) In diluted solutions of non-ionzable solvents, ILs exist as contact ion-pairs (CIPs) and H2 will form H-bond with anions. Since non-ionizable solvents hardly influence the H-bonding interactions between H2 and anions, the δH2 are not related to βS but positively correlated with βIL.  相似文献   

8.
Internal and rigid-body motions of bovine pancreatic trypsin inhibitor (BPTI) and of water molecules surrounding the BPTI are studied in a vicinity of an energy minimum using a normal mode analysis proposed as the independent molecule model. Water's rigid-body motion is predominant in comparison to its internal motions. We have derived information about the relationship between the magnitude of a thermal ellipsoid of an H-bonding atom and the anisotropy of its ellipsoid, and the relationship between the magnitude of the ellipsoid and the H-bond strength. We see a relationship between vibrational frequencies (assuming rigid-body motion of the water molecules) and the H-bond strength of the water taking part in this H-bonding. Analyzing the H-bond strength, we found that a hydrogen in water is likely to H-bond to oxygen in the protein, whereas an oxygen in water has a less strong preference to H-bond to the protein. For water molecules acting as the hydrogen acceptor, strong H-bonding has longer lifetimes than weak H-bonding.  相似文献   

9.
Hydrogen (H-) bonding ability of most stable keto and enol tautomers of formo- and thioformohydroxamic acids has been investigated by optimizing their 1:1 aggregates with MeSH and MeSeH as model molecules for sulfur and selenium containing amino acid side chains. Although enol is the most stable conformer of thioformohydroxamic acid, yet the most stable aggregate in both hydroxamic acids (HAs) being formed with keto conformer suggests that H-bonding can influence specific conformational dominance. In the aggregates, HAs preferably act as H-bond donor and S/Se of MeSH and MeSeH act as H-bond acceptor. The S···H and Se···H H-bonds although disfavored by electrostatics yet are favored by significant charge transfer. H-bonding preference and strength of interaction of HAs with MeSH and MeSeH is remarkably similar but markedly different from MeOH. AIM and NBO analysis have been employed to understand the role of electron delocalization, bond polarizations, charge transfer etc. as contributors to stabilization energy.  相似文献   

10.
The complexity of variables during incipient wetness impregnation synthesis of supported metal oxides precludes an in-depth understanding of the chemical reactions governing the formation of the dispersed oxide sites. This contribution describes the use of vapor phase deposition chemistry (also known as grafting) as a tool to systematically investigate the influence of isopropanol solvent on VO(OiPr)3 anchoring during synthesis of vanadium oxide on silica. The availability of anchoring sites on silica was found to depend not only on the pretreatment of the silica but also on the solvent present. H-bond donors can reduce the reactivity of isolated silanols whereas disruption of silanol nests by H-bond acceptors can turn unreactive H-bonded silanols into reactive anchoring sites. The model suggested here can inform improved syntheses with increased dispersion of metal oxides on silica.  相似文献   

11.
Intermolecular complexes formed between metalloporphyrins and pyridine ligands equipped with multiple H-bond donors and acceptors have been used to measure the free energy contributions due to intramolecular ether-phenol H-bonding in the 24 different supramolecular architectures using chemical double mutant cycles in toluene. The ether-phenol interactions are relatively weak, and there are significant populations of partially bound states where between zero and four intramolecular H-bonds are made in addition to the porphyrin-ligand coordination interaction. The complexes were analyzed as ensembles of partially bound states to determine the effective molarities for the intramolecular interactions by comparison with the corresponding intermolecular ether-phenol H-bonds. The properties of the ether-phenol interactions were compared with phosphonate diester-phenol interactions in a closely related ligand system, which has more powerful H-bond acceptor oxygens positioned at the same location on the ligand framework. This provides a comparison of the properties of weak and strong H-bonds embedded in the same 24 supramolecular architectures. When the product of the intermolecular association constant and the effective molarity KEM > 1, there is a linear increase in the free energy contribution due to H-bonding with log EM, because the intramolecular interactions contribute fully to the stability of the complex. When KEM < 1, the H-bonded state is not significantly populated, and there is no impact on the overall stability of the complex. Intermolecular phosphonate diester-phenol H-bonds are 2 orders of magnitude stronger than ether-phenol H-bonds in toluene, so for the phosphonate diester ligand system, 23 of the 24 supramolecular architectures make intramolecular H-bonds. However, only 8 of these architectures lead to detectable H-bonding in the ether ligand system. The other 15 complexes have a suitable geometry for formation of H-bonds, but the ether-phenol interaction is not strong enough to overcome the reorganization costs associated with making intramolecular contacts, i.e., KEM < 1 for the ether ligands, and KEM > 1 for the phosphonate diester ligands. The values of EM measured for two different types of H-bond acceptor are linearly correlated, which suggests that EM is a property of the supramolecular acrchitecture. However, the absolute value of EM for an intramolecular phosphonate diester H-bond is about 4 times lower than the corresponding value for an intramolecular ether-phenol interaction embedded in the same supramolecular framework, which suggests that there may be some interplay of K and EM.  相似文献   

12.
The effect of H-bond donation to the thiolate ligand of (eta(5)-C(5)H(5))Fe(CO)(2)SR (1) to give H-bond adducts (1 small middle dotHX) and eventually protonation to give [(eta(5)-C(5)H(5))Fe(CO)(2)(HSR)](+) (1H(+)()) has been investigated experimentally and computationally. The electronic structures of 1(R = Me), several derivatives of 1(R = Me) small middle dotHX, and 1(R = Me)H(+)() have been investigated using DFT (density functional theory) computational methods. As previously suggested, these calculations indicate the HOMO of 1 is Fedpi-Sppi antibonding and largely sulfur in character. The calculations indicate the electronic structure of 1 is not altered markedly by H-bond donation to the S center, but protonation results in a reorganization of the electronic structure of 1H(+)() and a HOMO that is largely metal in character. The reduction of Fe-S distances upon protonation of 1(R = Ph) to give 1(R = Ph)H(+)() small middle dotBF(4)()(-)() (2.282(2) and 2.258(2) A, respectively), as determined by single-crystal X-ray crystallography, also indicates diminished Fedpi-Sppi antibonding. Using the carbonyl stretching frequencies as a gauge of the donor ability of the thiolate ligand, we conclude that H-bonding has a continuous effect on the donor properties of the thiolate ligand of 1 (i.e., is a function of the pK(a) of the H-bond donor). A discontinuous effect results when the pK(b) of 1 is reached and the complex is protonated. For our study of 1, the maximal effect of H-bonding is about 30% of protonation. Because the position of acid-base equilibrium depends on the relative basicities of the thiolate ligand and the conjugate base of the H-bond donor (and the relative heats of solvation of the acids and their conjugate bases), a true continuum of effects can be anticipated only for systems that are pK-matched in their given environments. Thus, when the conjugate base of the H-bond donor is a stronger base than the thiolate ligand (as in the present case), H-bond donation has a relatively small effect, but protonation triggers a large, discontinuous effect on the electronic structure of 1.  相似文献   

13.
Dicarba-closo-dodecaborane (carborane) has received much attention as a building block for supramolecular assemblies and bioactive compounds. Among the carborane isomers, 1,2-dicarba-closo-dodecaborane (o-carborane) has unique chemical properties, including the ability of the o-carborane C-H hydrogens to form H-bonds. We have designed and synthesized 1-(2-methoxyphenyl)-o-carborane 1a to study its ability to form an intramolecular H-bond between the o-carborane C-H hydrogen and various H-bond acceptors both in solution and in the solid state. Intramolecular H-bonding ability in solution was evaluated by means of 1H NMR spectroscopic measurements of the C-H hydrogen signal. The signal of the C-H hydrogen of 1a showed a remarkable downfield shift in CDCl3 and various other solvents, i.e., the shift was almost solvent-independent. We suggest that 1a forms an intramolecular H-bond in these solvents. Crystal structure analysis of 1a showed a C-H?O distance of 2.05 Å and a nearly planar torsion angle C(2)-C(1)-C(7)-C(8) of 6.5°, indicating intramolecular C-H?O H-bond formation in the solid state. The crystal packing of 1a indicates that a supramolecular array is stabilized by cooperative π-π stacking interactions among the methoxyphenyl groups and by hydrophobic interactions of the o-carborane cages. DFT calculations indicate that the strength of the intramolecular H-bond of 1a is about 3.53 kcal/mol. These observations indicate the potential value of o-carborane in supramolecular chemistry and materials chemistry; it should be possible to design novel materials by utilizing both the H-bonding ability of the o-carborane C-H hydrogen and the high hydrophobicity of the o-carborane cage.  相似文献   

14.
Thiourea- and squaramide-based bifunctional base catalysts represent nowadays a powerful tool in the field of asymmetric catalysis and have demonstrated very efficient for promoting a wide variety of transformations enantioselectively. New versions that incorporate one or various additional H-bond donor site(s) in the catalyst structure have been developed recently which led to more active (reduced catalyst loadings) and selective catalysts. This review highlights the pioneering ideas and the most recent contributions to the area with the material organized according to the nature of the additional H-bond donor functionality. The advantages, current limitations and perspectives of these new multifunctional catalysts are discussed.  相似文献   

15.
Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein–ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein–ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.  相似文献   

16.
Two-component organogelators based on a discotic H-bonding donor of 1,3,5-tris(4-amidobutanoic acid)phenyl benzene (2), and acceptors of 4-(4-alkoxybenzoyloxy)-4′-stilbazole derivatives were reported. These complexes showed good gelation ability for alcohols, which are known to be unfavorable for H-bonding formation. SEM study revealed that sheet-like network, nanotapes, and nanorods were gained from the self-assembling of the complexes with small difference of the carbon chain length. Based on XRD, IR, temperature-dependent 1H NMR, and UV-vis absorption investigations, the gel-phase materials were generated from 1D columnar-type packing of complexes facilitated by cooperative H-bonding, π-stacking, and van der Walls interactions.  相似文献   

17.
A library of gold(I) chloride complexes with phosphine ligands incorporating pendant (thio)urea and squaramide H-bond donors was prepared with the aim of promoting chloride abstraction from Au(I) via H-bonding. In the absence of silver additives, complexes bearing squaramides and trifluoromethylated aromatic ureas displayed good catalytic activity in the cyclization of N-propargyl benzamides, as well as in a 1,6-enyne cycloisomerization, a tandem cyclization-indole addition reaction and the hydrohydrazination of phenylacetylene. Kinetic studies and DFT calculations indicate that the energetic span of the reaction is accounted by both the chloride abstraction step, facilitated by the bidentate H-bond donor via an associative mechanism, and the subsequent cyclization step.  相似文献   

18.
19.
A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of catalytic triad in serine protease to validate the formation processes of low-barrier H-bonds (LBHB) at the B3LYP/6-311++G** level of theory, and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer. Solvent effect is an important factor in modulation of the existence of an LBHB, where an LBHB (or a conventional H-bond) in the gas phase can be changed into a non-LBHB (an LBHB) upon solvation. The origin of the additional stabilization energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor. Most importantly, the order of magnitude of the stabilization energy depends on the studied systems. Furthermore, the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method. As a result, only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB. Supported by the National Natural Science Foundation of China (Grant Nos. 20633060 & 20573063), the Natural Science Foundation of Shandong Province (Grant No. Y2007B23), the Scientific Research Foundation of Qufu Normal University (Grant Nos. Bsqd2007003 and Bsqd2007008), and the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University)  相似文献   

20.
1H NMR dilution experiment and FTIR were used to investigate the hydrogen bonded interaction in three different types of incompletely condensed silsesquioxanes (POSS-mono-ol, POSS-diol and POSS-triol). For POSS-triol, there existed a dynamic equilibrium between single molecule and hydrogen-bonded dimer, and the dimerization constants (Kdim) of POSS-triol in different solvents were determined by 1H NMR dilution experiment. In addition, based on hydroxy group which acted as hydrogen bond donors, the possibility of three POSS silanols as anion receptors to form host-guest complexes was also explored in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号