首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic approach to the sandwich complex [Cp′′′Co(η4‐P4)] ( 2 ) containing a cyclo‐P4 ligand as an end‐deck was developed. Complex 2 is the missing homologue in the series of first‐row cyclo‐Pn sandwich complexes, and shows a unique tendency to dimerize in solution to form two isomeric P8 complexes [(Cp′′′Co)2(μ,η421‐P8)] ( 3 and 4 ). Reactivity studies indicate that 2 and 3 react with further [Cp′′′Co] fragments to give [(Cp′′′Co)2(μ,η22‐P2)2] ( 5 ) and [(Cp′′′Co)3P8] ( 6 ), respectively. Furthermore, complexes 2 , 3 , and 4 thermally decompose forming 5 , 6 , and the P12 complex [(Cp′′′Co)3P12] ( 7 ). DFT calculations on the P4 activation process suggest a η3‐P4 Co complex as the key intermediate in the synthesis of 2 as well as in the formation of larger polyphosphorus complexes via a unique oligomerization pathway.  相似文献   

2.
The reactivity of the P4 butterfly complex [{Cp’’’Fe(CO)2}2(μ,η1:1-P4)] ( 1 , Cp’’’=η5-C5H2tBu3) towards divalent Co, Ni and Zn salts is investigated. The reaction with the bromide salts leads to [{Cp’’’Fe(CO)2}232:1:1-P4){MBr2}] (M=Co ( 2Co ), Ni ( 2Ni ), Zn ( 2Zn )) in which the P4 butterfly scaffold is preserved. The use of the weakly ligated Co complex [Co(NCCH3)6][SbF6]2, results in the formation of [{(Cp’’’Fe(CO)2)234:1:1-P4)}2Co][SbF6]3 ( 3 ), which represents the second example of a homoleptic-like octaphospha-metalla-sandwich complex. The formation of the threefold positively charged complex 3 occurs via redox processes, which among others also enables the formation of [{Cp’’’Fe(CO)2}454:1:1:1:1-P8){Co(CO)2}][SbF6] ( 4 ), bearing a rare octaphosphabicyclo[3.3.0]octane unit as a ligand. On the other hand, the reaction with [Zn(NCCH3)4][PF6]2 yields the spiro complex [{(Cp’’’Fe(CO)2)232:1:1-P4)}2Zn][PF6]2 ( 5 ) under preservation of the initial structural motif.  相似文献   

3.
The versatile coordination behavior of the P4 butterfly complex [{Cp′′′Fe(CO)2}2(μ,η1:1-P4)] ( 1 , Cp′′′=η5-C5H2tBu3) towards different iron(II) compounds is presented. The reaction of 1 with [FeBr2⋅dme] (dme=dimethoxyethane) leads to the chelate complex [{Cp′′′Fe(CO)2}231:1:2-P4){FeBr2}] ( 2 ), whereas, in the reaction with [Fe(CH3CN)6][PF6]2, an unprecedented rearrangement of the P4 butterfly structural motif leads to the cyclo-P4 moiety in {(Cp′′′Fe(CO)2)231:1:4-P4)}2Fe][PF6]2 ( 3 ). Complex 3 represents the first fully characterized “carbon-free” sandwich complex containing cyclo-P4R2 ligands in a homoleptic-like iron–phosphorus-containing molecule. Alternatively, 2 can be transformed into 3 by halogen abstraction and subsequent coordination of 1 . The additional isolated side products, [{Cp′′′Fe(CO)2}231:1:2-P4){Cp′′′Fe(CO)}][PF6] ( 4 ) and [{Cp′′′Fe(CO)2}231:1:4-P4){Cp′′′Fe}][PF6] ( 5 ), give insight into the stepwise activation of the P4 butterfly moiety in 1 .  相似文献   

4.
5.
6.
By the reaction of [NacnacCuCH3CN] with white phosphorus (P4) and yellow arsenic (As4), the stabilization and enclosure of the intact E4 tetrahedra are realized and the disubstituted complexes [(NacnacCu)2(μ,η2:2‐E4)] ( 1 a : E=P, 1 b : E=As) are formed. The mono‐substituted complex [NacnacCu(η2‐P4)] ( 2 ), was detected by the exchange reaction of 1 a with P4 and was only isolated using low‐temperature work‐up. All products were comprehensively spectroscopically and crystallographically characterized. The bonding situation in the products as intact E4 units (E=P, As) was confirmed by theory and was experimentally proven by the pyridine promoted release of the bridging E4 tetrahedra in 1 .  相似文献   

7.
The coordination properties of new types of bidentate phosphane and arsane ligands with a narrow bite angle are reported. The reactions of [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] ( 1 a ) with the copper salt [Cu(CH3CN)4][BF4] leads, depending on the stoichiometry, to the formation of the spiro compound [{{Cp′′′Fe(CO)2}231:1:1:1‐P4)}2Cu]+[BF4]? ( 2 ) or the monoadduct [{Cp′′′Fe(CO)2}231:1:2‐P4){Cu(MeCN)}]+[BF4]? ( 3 ). Similarly, the arsane ligand [{Cp′′′Fe(CO)2}2(μ,η1:1‐As4)] ( 1 b ) reacts with [Cu(CH3CN)4][BF4] to give [{{Cp′′′Fe(CO)2}231:1:1:1‐As4)}2Cu]+[BF4]? ( 5 ). Protonation of 1 a occurs at the “wing tip” phosphorus atoms, which is in line with the results of DFT calculations. The compounds are characterized by spectroscopic methods (heteronuclear NMR spectroscopy and IR spectrometry) and by single‐crystal X‐ray diffraction studies.  相似文献   

8.
9.
P makes it possible : The convenient oxidative synthesis of the 16‐electron organophosphorus iron sandwich complex [Fe(η4‐P2C2tBu2)2] (see structure) suggests that the elusive all‐carbon complex [Fe(η4‐C4H4)2] is a viable synthetic target.

  相似文献   


10.
Dinuclear Iron Complexes with Different P4 Ligands The photolysis of [Cp″Fe(CO)2]2 1 (Cp″ = C5H3tBu2-1,3) and P4 gives with successive cleavage of P? P bonds and decarbonylation the P4 complex series [Cp″2Fe2P4(CO)4 ? n] 2 (n = O), 3 (n = 1), 4 (n = 2), 5 (n = 3) and 6 (n = 4) with different P4 ligands. 4 and 6 have been further characterized by X-ray structure analyses.  相似文献   

11.
A systematic study on the reactivity of the triple-decker complex [(Cp’’’Co)2(μ,η44-C7H8)] ( A ) (Cp’’’=1,2,4-tritertbutyl-cyclopentadienyl) towards sandwich complexes containing cyclo-P3, cyclo-P4, and cyclo-P5 ligands under mild conditions is presented. The heterobimetallic triple-decker sandwich complexes [(Cp*Fe)(Cp’’’Co)(μ,η54-P5)] ( 1 ) and [(Cp’’’Co)(Cp’’’Ni)(μ,η33-P3)] ( 3 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) were synthesized and fully characterized. In solution, these complexes exhibit a unique fluxional behavior, which was investigated by variable temperature NMR spectroscopy. The dynamic processes can be blocked by coordination to {W(CO)5} fragments, leading to the complexes [(Cp*Fe)(Cp’’’Co)(μ3541-P5){W(CO)5}] ( 2 a ), [(Cp*Fe)(Cp’’’Co)(μ45411-P5){(W(CO)5)2}] ( 2 b ), and [(Cp’’’Co)(Cp’’’Ni)(μ3321-P3){W(CO)5}] ( 4 ), respectively. The thermolysis of 3 leads to the tetrahedrane complex [(Cp’’’Ni)2(μ,η22-P2)] ( 5 ). All compounds were fully characterized using single-crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry, and elemental analysis.  相似文献   

12.
The CAAC [CAAC=cyclic (alkyl)(amino)carbene] family of carbene ligands have shown promise in stabilizing unusually low‐coordination number transition‐metal complexes in low formal oxidation states. Here we extend this narrative by demonstrating their utility in affording access to the first examples of two‐coordinate formal Fe0 and Co0 [(CAAC)2M] complexes, prepared by reduction of their corresponding two‐coordinate cationic FeI and CoI precursors. The stability of these species arises from the strong σ‐donating and π‐accepting properties of the supporting CAAC ligands, in addition to steric protection.  相似文献   

13.
A rare phosphorus analogue of the elusive complex bis(η4‐cyclobutadiene)iron(0) is reported by K. Lammertsma et al. in their Communication on page 3104 ff. The background of the cover picture shows John Montagu (1718–1792), 4th Earl of Sandwich and 1st Lord of the Admiralty, who certainly would not have dreamt that an important class of organometallic compounds, sandwich complexes, would bear his name one day. The synthesis of [Fe(P2C2tBu2)2] shows that sandwich complexes are still topical objects of research.

  相似文献   


14.
Reduction of the FeII complex [(PhPP2Cy)FeCl2] ( 2 ) generated an electron‐rich and unsaturated Fe0 species, which was reacted with white phosphorus. The resulting new complex, [(PhPP2Cy)Fe(η4‐P4)] ( 3 ), is the first iron cyclo‐P4 complex and the only known stable end‐deck cyclo‐P4 complex outside Group V. Complex 3 features an FeII center, as shown by Mössbauer spectroscopy, associated to a P42? fragment. The distinct reactivity of complex 3 was rationalized by analysis of the molecular orbitals. Reaction of complex 3 with H+ afforded the unstable complex [(PhPP2Cy)Fe(η4‐P4)(H)]+ ( 4 ), whereas with CuCl and BCF, the complexes [(PhPP2Cy)Fe(η41‐P4)(μ‐CuCl)]2 ( 5 ) and [(PhPP2Cy)Fe(η41‐P4)B(C6F5)3] ( 6 ) were formed.  相似文献   

15.
16.
Relative to other cyclic poly‐phosphorus species (that is, cyclo‐Pn), the planar cyclo‐P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4 complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2? dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo‐P4 complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2 and Mo(η4‐P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2? and [Mo(η4‐P4)(CO)2(CNArDipp2)]2?, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3 regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号