首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the continuous-time algebraic Riccati equation (CARE) and the discrete-time algebraic Riccati equation (DARE) which arise in linear control and system theory. It is known that appropriate assumptions on the coefficient matrices guarantee the existence and uniqueness of Hermitian positive semidefinite stabilizing solutions. In this note, we apply the theory of condition developed by Rice to define condition numbers of the CARE and DARE in the Frobenius norm, and derive explicit expressions of the condition numbers in a uniform manner. Both the complex case and real case are considered, and connections to certain existing condition numbers of the CARE and DARE are discussed.  相似文献   

2.
Delta算子Riccati方程研究的新结果   总被引:1,自引:0,他引:1  
张端金  刘侠  吴捷 《应用数学》2003,16(3):104-107
基于Delta算子描述,统一研究连续时间代数Riccati方程(CARE)和离散时间代数Riccati方程(DARE)的定界估计问题,提出了统一代数Riccati方程(UARE)解矩阵的上下界,给出UARE中P与R和Q的几个基本关系.  相似文献   

3.
We study perturbation bound and structured condition number about the minimal nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp perturbation bound and an accurate condition number. By using the matrix sign function method we present a new method for finding the minimal nonnegative solution of this algebraic Riccati equation. Based on this new method, we show how to compute the desired M-matrix solution of the quadratic matrix equation X^2 - EX - F = 0 by connecting it with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is an M-matrix.  相似文献   

4.
In this paper we study a continuous-time multiparameter algebraic Riccati equation (MARE) with an indefinite sign quadratic term. The existence of a unique and bounded solution of the MARE is newly established. We show that the Kleinman algorithm can be used to solve the sign indefinite MARE. The proof of the convergence and the existence of the unique solution of the Kleinman algorithm is done by using the Newton-Kantorovich theorem. Furthermore, we present new algorithms for solving the generalized multiparameter algebraic Lyapunov equation (GMALE) by means of the fixed-point algorithm.  相似文献   

5.
We study perturbation bound and structured condition number about the minimalnonnegative solution of nonsymmetric algebraic Riccati equation,obtaining a sharp per-turbation bound and an accurate condition number.By using the matrix sign functionmethod we present a new method for finding the minimal nonnegative solution of this al-gebraic Riccati equation.Based on this new method,we show how to compute the desiredM-matrix solution of the quadratic matrix equation X~2-EX-F=0 by connecting itwith the nonsymmetric algebraic Riccati equation,where E is a diagonal matrix and F isan M-matrix.  相似文献   

6.
For the nonsymmetric algebraic Riccati equation arising from transport theory, we concern about solving its minimal positive solution. In [1], Lu transferred the equation into a vector form and pointed out that the minimal positive solution of the matrix equation could be obtained via computing that of the vector equation. In this paper, we use the King-Werner method to solve the minimal positive solution of the vector equation and give the convergence and error analysis of the method. Numerical tests show that the King-Werner method is feasible to determine the minimal positive solution of the vector equation.  相似文献   

7.
We start with a discussion of coupled algebraic Riccati equations arising in the study of linear-quadratic optimal control problems for Markov jump linear systems. Under suitable assumptions, this system of equations has a unique positive semidefinite solution, which is the solution of practical interest. The coupled equations can be rewritten as a single linearly perturbed matrix Riccati equation with special structures. We study the linearly perturbed Riccati equation in a more general setting and obtain a class of iterative methods from different splittings of a positive operator involved in the Riccati equation. We prove some special properties of the sequences generated by these methods and determine and compare the convergence rates of these methods. Our results are then applied to the coupled Riccati equations of jump linear systems. We obtain linear convergence of the Lyapunov iteration and the modified Lyapunov iteration, and confirm that the modified Lyapunov iteration indeed has faster convergence than the original Lyapunov iteration.  相似文献   

8.
Synchronization conditions for chaotic nonlinear continuous neural networks   总被引:1,自引:0,他引:1  
This paper deals with the synchronization problem of a class of chaotic nonlinear neural networks. A feedback control gain matrix is derived to achieve the state synchronization of two identical nonlinear neural networks by using the Lyapunov stability theory, and the obtained criterion condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. The new sufficient condition can avoid solving an algebraic Riccati equation. The results are illustrated through one numerical example.  相似文献   

9.
In the present paper, we propose a preconditioned Newton–Block Arnoldi method for solving large continuous time algebraic Riccati equations. Such equations appear in control theory, model reduction, circuit simulation amongst other problems. At each step of the Newton process, we solve a large Lyapunov matrix equation with a low rank right hand side. These equations are solved by using the block Arnoldi process associated with a preconditioner based on the alternating direction implicit iteration method. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approach.  相似文献   

10.
Differential matrix equations appear in many applications like optimal control of partial differential equations, balanced truncation model order reduction of linear time varying systems and many more. Here, we will focus on differential Riccati equations (DRE). Solving such matrix-valued ordinary differential equations (ODE) is a highly time consuming process. We present a Parareal based algorithm applied to Rosenbrock methods for the solution of the matrix-valued differential Riccati equations. Considering problems of moderate size, direct matrix equation solvers for the solution of the algebraic Lyapunov equations arising inside the time intgration methods are used. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
For the non‐symmetric algebraic Riccati equations, we establish a class of alternately linearized implicit (ALI) iteration methods for computing its minimal non‐negative solutions by technical combination of alternate splitting and successive approximating of the algebraic Riccati operators. These methods include one iteration parameter, and suitable choices of this parameter may result in fast convergent iteration methods. Under suitable conditions, we prove the monotone convergence and estimate the asymptotic convergence factor of the ALI iteration matrix sequences. Numerical experiments show that the ALI iteration methods are feasible and effective, and can outperform the Newton iteration method and the fixed‐point iteration methods. Besides, we further generalize the known fixed‐point iterations, obtaining an extensive class of relaxed splitting iteration methods for solving the non‐symmetric algebraic Riccati equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Liang Bao The non-symmetric algebraic Riccati equation arising in transporttheory can be rewritten as a vector equation and the minimalpositive solution of the non-symmetric algebraic Riccati equationcan be obtained by solving the vector equation. In this paper,we apply the modified Newton method to solve the vector equation.Some convergence results are presented. Numerical tests showthat the modified Newton method is feasible and effective, andoutperforms the Newton method.  相似文献   

14.
We show how Van Loan's method for annulling the (2,1) block of skew‐Hamiltonian matrices by symplectic‐orthogonal similarity transformation generalizes to general matrices and provides a numerical algorithm for solving the general quadratic matrix equation: For skew‐Hamiltonian matrices we find their canonical form under a similarity transformation and find the class of all symplectic‐orthogonal similarity transformations for annulling the (2,1) block and simultaneously bringing the (1,1) block to Hessenberg form. We present a structure‐preserving algorithm for the solution of continuous‐time algebraic Riccati equation. Unlike other methods in the literature, the final transformed Hamiltonian matrix is not in Hamiltonian–Schur form. Three applications are presented: (a) for a special system of partial differential equations of second order for a single unknown function, we obtain the matrix of partial derivatives of second order of the unknown function by only algebraic operations and differentiation of functions; (b) for a similar transformation of a complex matrix into a symmetric (and three‐diagonal) one by applying only finite algebraic transformations; and (c) for finite‐step reduction of the eigenvalues–eigenvectors problem of a Hermitian matrix to the eigenvalues– eigenvectors problem of a real symmetric matrix of the same dimension. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Recently, Xue etc. \cite{28} discussed the Smith method for solving Sylvester equation $AX+XB=C$, where one of the matrices $A$ and $B$ is at least a nonsingular $M$-matrix and the other is an (singular or nonsingular) $M$-matrix. Furthermore, in order to find the minimal non-negative solution of a certain class of non-symmetric algebraic Riccati equations, Gao and Bai \cite{gao-2010} considered a doubling iteration scheme to inexactly solve the Sylvester equations. This paper discusses the iterative error of the standard Smith method used in \cite{gao-2010} and presents the prior estimations of the accurate solution $X$ for the Sylvester equation. Furthermore, we give a new version of the Smith method for solving discrete-time Sylvester equation or Stein equation $AXB+X=C$, while the new version of the Smith method can also be used to solve Sylvester equation $AX+XB=C$, where both $A$ and $B$ are positive definite. % matrices. We also study the convergence rate of the new Smith method. At last, numerical examples are given to illustrate the effectiveness of our methods  相似文献   

16.
A noniterative algebraic method is presented for solving differential Riccati equations which satisfy two-point boundary-value problems. This class of numerical problems arises in quadratic optimization problems where the cost functionals are composed of both continuous and discrete state penalties, leading to piecewise periodic feedback gains. The necessary condition defining the solution for the two-point boundary value problem is cast in the form of a discrete-time algebraic Riccati equation, by using a formal representation for the solution of the differential Riccati equation. A numerical example is presented which demonstrates the validity of the approach.The authors would like to thank Dr. Fernando Incertis, IBM Madrid Scientific Center, who reviewed this paper and pointed out that the two-point boundary-value necessary condition could be manipulated into the form of a discrete-time Riccati equation. His novel approach proved to be superior to the authors' previously proposed iterative continuation method.  相似文献   

17.
In this paper, we propose a structure-preserving doubling algorithm (SDA) for the computation of the minimal nonnegative solution to the nonsymmetric algebraic Riccati equation (NARE), based on the techniques developed for the symmetric cases. This method allows the simultaneous approximation to the minimal nonnegative solutions of the NARE and its dual equation, requiring only the solutions to two linear systems and several matrix multiplications per iteration. Similar to Newton's method and the fixed-point iteration methods for solving NAREs, we also establish global convergence for SDA under suitable conditions, using only elementary matrix theory. We show that sequences of matrices generated by SDA are monotonically increasing and quadratically convergent to the minimal nonnegative solutions of the NARE and its dual equation. Numerical experiments show that the SDA algorithm is feasible and effective, and outperforms Newton's iteration and the fixed-point iteration methods. This research was supported in part by RFDP (20030001103) & NSFC (10571007) of China and the National Center for Theoretical Sciences in Taiwan. This author's research was supported by NSFC grant 1057 1007 and RFDP grant 200300001103 of China.  相似文献   

18.
The standard algebraic stability condition for general linear methods (GLMs) is considered in a modified form, and connected to a branch of Control Theory concerned with the discrete algebraic Riccati equation (DARE). The DARE theory shows that, for an algebraically stable method, there is a minimal G-matrix, G *, satisfying an equation, rather than an inequality. This result, and another alternative reformulation of algebraic stability, are applied to construct new GLMs with 2 steps and 2 stages, one of which has order p=4 and stage order q=3. The construction process is simplified by method-equivalence, and Butcher’s simplified order conditions for the case pq+1.   相似文献   

19.
We consider the algebraic Riccati equation for which the four coefficient matrices form an M-matrix K. When K is a nonsingular M-matrix or an irreducible singular M-matrix, the Riccati equation is known to have a minimal nonnegative solution and several efficient methods are available to find this solution. In this paper we are mainly interested in the case where K is a reducible singular M-matrix. Under a regularity assumption on the M-matrix K, we show that the Riccati equation still has a minimal nonnegative solution. We also study the properties of this particular solution and explain how the solution can be found by existing methods.  相似文献   

20.
The perturbation results for the solutions of two linearly perturbed algebraic Riccati equations are derived. We generalize the results of Sun [SIAM J. Matrix Anal. Appl., 19 (1998):39–65] for continuous (CARE) and discrete (DARE) algebraic Riccati equations, respectively. The results are illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号