首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a robust method for the synthesis of high-quality ZIF-8 nanocrystals using reverse micelles as discrete nanoscale reactors.The precise size control of ZIF-8 nanocrystals is conveniently achieved by tuning the concentration of precursors,reaction temperatures,the amount of water,and the structure of surfactants.The as-synthesized ZIF-8 nanocrystals are of narrow distribution and tunable size.A size-dependent catalytic activity for Knoevenagel condensation reaction is further demonstrated by using ZIF-8 nanocrystals with different sizes as the catalysts.This facile method opens up a new opportunity in the synthesis of various ZIFs nanocrystals.  相似文献   

2.
将PdCl2与ZIF-8的反应原料ZnO和2-甲基咪唑按照一定的比例,采用机械化学法原位将Pd2+负载在ZIF-8上(Pd2+/ZIF-8)。然后用NaBH4将Pd2+/ZIF-8进行还原,得到均匀分散的Pd纳米颗粒(Pd/ZIF-8)。通过XRD、N2吸附、透射电镜、ICP-AES、XPS等对Pd/ZIF-8的结构、形貌、价态等进行了表征。结果表明用机械化学法原位制备的Pd/ZIF-8具有分散均匀、容易大量制备的优点。该催化剂不仅能高效催化Suzuki-Miyaura交叉偶联反应,并且能够多次循环利用。  相似文献   

3.
《Arabian Journal of Chemistry》2020,13(11):8301-8308
Hydrogen peroxide (H2O2) is one of the most promising, green, and effective oxidants that can be used in different applications. In this study, zeolitic imidazolate frameworks (ZIFs), consisting of organic ligands and metal sites, were selectively prepared from zinc or nickel nitrate solutions for use in photocatalytic H2O2 production. High concentrations of zinc nitrate solution provided more metal sites to coordinate with 2-methylimidazole, producing ZIF-8 with larger particle size, whereas low zinc nitrate concentrations resulted in more interconnected N–H⋯N hydrogen bonds, forming 2D-layered ZIF-L, with smaller particle size. Various concentrations of zinc and nickel nitrate solutions produced ZIFs that exhibited ZIF-8 or ZIF-L topology, with bandgap energies of 5.45 and 4.85 eV, respectively. These samples could serve as promising photocatalyst for the successful production of H2O2 under Xenon lamp irradiation.  相似文献   

4.
Zeolitic imidazolate frameworks (ZIFs), in particular ZIF-8 (made of Zn2+ and 2-methyilimidazolate) and cobalt-doped-ZIF-8, are found important for many energy and environmental applications. It was reported that ZIFs show excellent structural stability in water and thus ideal for aqueous applications. However, recent studies also found some evidence that ZIF-8 undergoes hydrolysis in water. Despite the importance of ZIF's stability in many aqueous applications, the extent of ZIFs' degradation in water is still not yet fully understood. In this study, we report a quantitative study of the water stability of 0–100 at% cobalt-doped ZIF-8, using a new combination of analytical tools. The study demonstrated the importance of analyzing both filtered powders and the filtrate liquid systematically, in particular by using UV–Vis spectroscopy and thermogravimetric analysis. The combination of analytical tools allowed the study on the effects of ZIF concentrations in water, cobalt doping levels, and amounts of ligands in water on the water stability of ZIF samples. The effect of cobalt-doping was investigated by using ZIF particles with identical sizes (200–400 nm), in order to eliminate the effects of particle size on hydrolysis. Unlike other synthesis methods, a mechanochemical ball milling method allowed the production of nano-scale ZIF-8 particles with similar sizes, independent of cobalt-doping levels. The proposed combination of analytical tools including UV–Vis spectroscopy can be applied to the study of the water stability of other MOF materials.  相似文献   

5.
The Fischer–Tropsch synthesis using cobalt catalysts supported on zeolitic imidazolate frameworks (ZIFs), ZIF-7 and ZIF-8, has been investigated. ZIF-7, ZIF-8 and corresponding cobalt-containing catalysts, after preparation, were characterized using various techniques. Thermogravimetric analysis results show that ZIF-7 and ZIF-8 supports have good thermal stability for the Fischer–Tropsch synthesis reaction, and weaker interaction between cobalt and zinc in the ZIF-7 and ZIF-8 supports results in more cobalt reduction. The catalytic performance was evaluated in Fischer–Tropsch synthesis and compared with that of a cobalt catalyst supported on SBA-15 promoted with zinc. The pore structure of the ZIF supports plays an essential role in product selectivity for the prepared catalysts. The carbon number in hydrocarbon products and olefin selectivity depend on cobalt dispersion and support structure owing to the impacts of site density and carrier skeleton on the speed of diffusion-enhanced olefin re-adsorption reactions.  相似文献   

6.
Zeolitic Imidazolate Frameworks (ZIFs) are considered as a novel porous material combining high stability in inorganic zeolites with high porosity and organic functionality of MOFs. The cage-like structure selectively and efficiently traps CO2, which is an indispensable and critical step for Electrocatalytic CO2 Reduction Reaction (CO2RR). In this work, ultrasmall ZIF-8 nanomaterials are synthesized by tuning the molar ratio of the feedstock and used as electrocatalysts for the selective reduction of CO2 to CO. The catalytic activity of the ultra-small size ZIF-8 material for the electrocatalytic reduction of CO2 can reach satisfactory results with a Faraday efficiency of 91 % for CO and a stability of 12.5 h at a high applied potential of −1.8 V vs. RHE. The investigation can provide a new idea to explore for the design and improvement of catalysts for CO2RR.  相似文献   

7.
王强  胡文清  孙豫  邓哲鹏 《化学通报》2024,87(2):184-189
钴基沸石咪唑酯骨架材料(ZIFs)结构和功能的多样化使其在电化学领域得到了广泛应用。然而,ZIF-67的低固有电导率和容易自聚集的性质,通常会导致高过电位。因此,有必要通过其他离子掺杂进行优化,以提高ZIF-67衍生物的电催化性能。本文概述了ZIF-67的合成及其析氧性能,总结了常见的通过离子掺杂提高ZIF-67析氧性能的方法,并梳理了其在催化电解水析氧方面的应用。最后对ZIF-67及其衍生物的发展方向和前景进行展望,为今后的研究提供参考。  相似文献   

8.
Metal–organic frameworks/zeolitic imidazolate frameworks (MOFs/ZIFs) and their post-synthesis modified nanostructures, such as oxides, hydroxides, and carbons have generated significant interest for electrocatalytic reactions. In this work, a high and durable oxygen evolution reaction (OER) performance directly from bimetallic Zn100−xCox-ZIF samples is reported, without carrying out high-temperature calcination and/or carbonization. ZIFs can be reproducibly and readily synthesized in large scale at ambient conditions. The bimetallic ZIFs show a systematic and gradually improved OER activity with increasing cobalt concentration. A further increase in OER activity is evidenced in ZIF-67 polyhedrons with controlled particle size of <200 nm among samples of different sizes between 50 nm and 2 μm. Building on this, a significantly enhanced, >50 %, OER activity is obtained with ZIF-67/carbon black, which shows a low overpotential of approximately 320 mV in 1.0 m KOH electrolyte. Such activity is comparable to or better than numerous MOF/ZIF-derived electrocatalysts. The optimized ZIF-67 sample also exhibits increased activity and durability over 24 h, which is attributed to an in situ developed active cobalt oxide/oxyhydroxide related nanophase.  相似文献   

9.
张健爽  高美珍  王梦瑶  石琪  董晋湘 《应用化学》2022,39(11):1735-1745
1,3-丙二醇是一种重要的化工原料,生物发酵法生产1,3-丙二醇往往会产生副产物2,3-丁二醇,限制了生物基1,3-丙二醇的进一步工业化应用。1,3-丙二醇与2,3-丁二醇亲水性强,导致其在低浓度发酵液中分离困难。基于2,3-丁二醇比1,3-丙二醇具有长的碳链和大的极化率,本文采用含有―Cl基团(憎水且具有大的极化率)的ZIF-71吸附分离水中低浓度的2,3-丁二醇/1,3-丙二醇。结果表明,ZIF-71对双组分2,3-丁二醇/1,3-丙二醇(50 g/L,50 g/L)中2,3-丁二醇的静态竞争吸附容量为123.6 mg/g,对2,3-丁二醇/1,3-丙二醇分离选择性高达7.6,分离效果优于沸石材料Beta。在3次循环吸附-解吸实验中ZIF-71依旧保持着稳定的结构和对2,3-丁二醇的选择性吸附能力。通过分子模拟,揭示了ZIF-71对1,3-丙二醇和2,3-丁二醇的吸附分离机制。ZIF-71与1,3-丙二醇之间主要通过弱的范德华力作用;而ZIF-71与2,3-丁二醇之间则是通过强的范德华力与弱的氢键协同作用,从而对2,3-丁二醇产生选择性吸附。可以看出, ZIFs材料有望成为选择性吸附分离低浓度副产物2,3-丁二醇的吸附剂,推动生物法制1,3-丙二醇的工业化发展。  相似文献   

10.
This research presents results on the production of biodiesel from the transesterification of acylglycerides present in palm oil, using the biocatalysts ZIF-8-PCL and Gly@ZIF-8-PCL synthesized by immobilization of Pseudomonas Cepacia Lipase as catalytic materials and using pure ZIF-8 and Gly@ZIF-8 (modified ZIF-8) as supports. The Gly@ZIF-8 carbonaceous material was prepared by wet impregnation of ZIF-8 with ethylene glycol as the carbon source, and then thermally modified. The calcination conditions were 900 °C for two hours with a heating rate of 7 °C/min in an inert atmosphere. A textural characterization was performed, and results showed superficial changes of materials at the microporous and mesoporous levels for the Gly@ZIF-8 material. Both the starting materials and biocatalysts were characterized by infrared spectroscopy (FTIR) and Raman spectroscopy. During the transesterification, using the two biocatalysts (ZIF-8-PCL and Gly@ZIF-8-PCL), two supernatant liquids were generated which were characterized by infrared spectroscopy (FTIR), gas chromatography coupled to mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). The results show that the two routes of synthesis of supports from ZIF-8 will be configured as effective methods for the generation of effective biocatalysts for biodiesel production.  相似文献   

11.
Zeolitic imidazolate frameworks (ZIFs) are comprised of transition metal ions (Zn, Co) and a range of imidazolate linkers in a tetrahedral coordination similar to that in crystalline aluminosilicate zeolites. The high surface area, tunable nanoporosity that can be subject to functionalization and the excellent thermal/chemical stability of ZIFs are attractive for heterogeneous catalysis and selective gas adsorption/separation. This review presents the current trends in synthesis, surface modification and catalytic reactions/adsorption of ZIF-based materials with particular emphasis on ZIF-8, which is the most widely studied structure among ZIFs.  相似文献   

12.
A fast and efficient mechanosynthesis (ball-milling) method of preparing amorphous zeolitic imidazolate frameworks (ZIFs) from different starting materials is discussed. Using X-ray total scattering, N(2) sorption analysis, and gas pycnometry, these frameworks are indistinguishable from one another and from temperature-amorphized ZIFs. Gas sorption analysis also confirms that they are nonporous once formed, in contrast to activated ZIF-4, which displays interesting gate-opening behavior. Nanoparticles of a prototypical nanoporous substituted ZIF, ZIF-8, were also prepared and shown to undergo amorphization.  相似文献   

13.
Metal–organic framework (MOF) nano particles are a class of promising porous nano materials for biomedical applications. Owing to its high loading potential and pH-sensitive degradation, most promising of the MOFs is the zeolitic imidazolate crystal framework (ZIF-8), a progressive useful material for small molecule distribution. Doxorubicin (DOX), designated as a classical drug, was jobwise entrapped in ZIF-8 nano particles. ZIF-8 nano particles, as a novel carrier, were used to monitor the release of the anticancer drug DOX and prevent it from dissipating before reaching its goal. ZIF-8 nano particles with encapsulated DOX (DOX@ZIF-8) can be synthesized in a single pot by incorporation of DOX into the reaction mixture. MOFs and the designed drug delivery (DOX@ZIF-8) system were characterized by Fourier transfer infrared, scanning electron microscopy, N2 sorption isotherm and X-ray diffraction. The impact of MOFs and the engineered drug delivery system on the viability of human breast and liver cancer cell lines was evaluated. The loaded drug was released at pH 5 faster than at pH 7.4. The nano particles of ZIF-8 showed low cytotoxicity, while DOX@ZIF-8 showed high cytotoxicity to HepG-2 and MCF-7 cells compared with free DOX at the equivalent concentration of DOX of >12.5 μg/ml. These findings indicate that DOX@ZIF-8 nano particles are a promising method for the delivery of cancer cells to drugs. Furthermore, ZIF-8, DOX and encapsulated DOX@ZIF-8 compounds were screened for their potential antibacterial activities against pathogenic bacteria compared with standard antibiotics by the agar well diffusion technique. The results demonstrate that the DOX@ZIF-8 exhibits a strong inhibition zone against Gram-negative strains (Escherichia coli) in comparison with the reference drug gentamycin. The docking active site interactions were evaluated to predict the binding between DOX with the receptor of breast cancer 3hb5-oxidoreductase and liver cancer 2h80-lipid binding protein for anticancer activity.  相似文献   

14.
以二甲基咪唑为有机连接体和以Zn(OH)2或Zn(NO3)2·6H2O为Zn源,在甲醇与氨水的混合溶液、甲醇和DMF 3种不同的合成体系中合成了沸石咪唑酯骨架结构材料ZIF-8(分别记为ZIF-8(NH4OH)、ZIF-8(MeOH)和ZIF-8(DMF),并采用XRD、FTIR、N2吸附、SEM、TPD及Knoevenagel缩合反应等手段对所合成材料进行了表征。结果表明,采用这3种不同的合成方法均可成功制备出ZIF-8,所合成的ZIF-8的形貌基本一致,但其晶粒大小和酸碱性能有较大区别,同ZIF-8(NH4OH)和ZIF-8(DMF)相比,ZIF-8(MeOH)晶粒分布集中、平均粒径较小且具有较大的外比表面积和较多的酸碱位。不同方法合成的ZIF-8在苯甲醛和丙二腈的Knoevenagel缩合反应中的催化性能有很大差异,ZIF-8(MeOH)催化活性明显高于ZIF-8(DMF)和ZIF-8(NH4OH),其较高的催化活性,同其较大的外比表面积和酸碱性能密切相关。  相似文献   

15.
CgL1 laccase from Corynebacterium glutamicum was encapsulated into the metal-organic framework (MOF) ZIF-8 which was synthesized in a rapid enzyme friendly aqueous synthesis, the fastest in situ encapsulation of laccases reported to date. The obtained enzyme/MOF, i. e. laccase@ZIF-8 composite showed enhanced thermal (up to 70 °C) and chemical (N,N-dimethylformamide) stability, resulting in a stable heterogenous catalyst, suitable for high temperature reactions in organic solvents. Furthermore, the defined structure of ZIF-8 produced a size selective substrate specificity, so that substrates larger than the pore size were not accepted. Thereby, 2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used to verify that the enzyme is immobilized inside the MOF versus the outside surface. The enzyme@MOF composite was analyzed by atomic absorption spectroscopy (ASS) to precisely determine the enzyme loading to 2.1 wt%.  相似文献   

16.
以二甲基咪唑为有机连接体和以Zn(OH)2或Zn(NO3)2·6H2O为Zn源,在甲醇与氨水的混合溶液、甲醇和DMF3种不同的合成体系中合成了沸石咪唑酯骨架结构材料ZIF-8(分别记为ZIF-8(NH4OH)、ZIF-8(MeOH)和ZIF-8(DMF),并采用XRD、FTIR、N2吸附、SEM、TPD及Knoevenagel缩合反应等手段对所合成材料进行了表征。结果表明,采用这3种不同的合成方法均可成功制备出ZIF-8,所合成的ZIF-8的形貌基本一致,但其晶粒大小和酸碱性能有较大区别,同ZIF-8(NH4OH)和ZIF-8(DMF)相比,ZIF-8(MeOH)晶粒分布集中、平均粒径较小且具有较大的外比表面积和较多的酸碱位。不同方法合成的ZIF-8在苯甲醛和丙二腈的Knoevenagel缩合反应中的催化性能有很大差异,ZIF-8(MeOH)催化活性明显高于ZIF-8(DMF)和ZIF-8(NH4OH),其较高的催化活性,同其较大的外比表面积和酸碱性能密切相关。  相似文献   

17.
Metal organic frameworks (MOFs) derived carbonaceous materials have a wide range of applications in the fields of energy storage, catalysis, adsorption and separation, etc. Especially, zeolitic imidazolate framework-8 (ZIF-8) is an excellent candidate to synthesize porous carbon due to the large surface area and high nitrogen content. However, the dominated microporous structure of ZIF-8-derived carbon significantly hinders ionic mass transfer, limiting the improvement of performance. Herein, MOF-derived mesoporous carbon was prepared using ZIF-8 as carbon precursor and cheap sodium silicate (Na2SiO3) as activator. The introduction of Na2SiO3 created rich mesoporous structure and increased specific surface area, as well as the effects of pyrolysis temperature and Na2SiO3 dosage on performance was also investigated. The obtained ZIF-derived porous carbon exhibits good electrochemical performance with specific capacitance of 263 F/g at 1 A/g and excellent cycle life (96.07% after 10,000 GCD cycles) in supercapacitor. The use of cheap Na2SiO3 activator provides a new orientation for the preparation of MOF-derived carbons with rich pores, high surface area, and facilitates the large-scale application of MOF-derived carbons.  相似文献   

18.
Using porous metal–organic frameworks (MOFs) as supports for immobilizing dyes as photocatalysts is an important strategy to construct a molecule-level photoreactor. Rational assembly of a heterogeneous photoreactor (photosensitizer + porosity + catalysis) requires individually tailoring based on the structure and function of the dyes and MOFs. Herein we report a facile, one-pot, room-temperature (RT) aqueous solution method to precisely embed an iodine-substituted boron dipyrromethene (I2-BODIPY) photosensitizer within zeolitic imidazolate framework-8 (ZIF-8) cavity. The resultant I2-BODIPY@ZIF-8 composite not only maintained the nanoporous cavity and outstanding stability inherited from ZIF-8 material but also possessed excellent visible-light harvesting property and high singlet oxygen production ability originated from I2-BODIPY dye. Combining the advantages of ZIF-8 material and I2-BODIPY dye, the composite is highly active as a visible light–driven photocatalyst for selective oxidization of aryl sulfides and a sulfur mustard simulant, 2-chloroethyl ethyl sulfide, at RT without overoxidation. Owing to its heterogeneous nature, the composite can be readily recycled at least five times for the oxidization without obvious loss of the catalytic activity.  相似文献   

19.
The use of green solvents as an alternative to dimethylformamide (DMF) in the synthesis of zeolitic imidazolate framework-90 (ZIF-90) was investigated. Two biobased aprotic dipolar solvents CyreneTM and γ-valerolactone (GVL) proved to successfully replace DMF in the synthesis at room temperature with a high product yield. While the CyreneTM—based product shows reduced porosity after activation, the use of GVL resulted in materials with preserved crystallinity and porosity after activation, without prior solvent exchange and a short treatment at 200 °C. The primary particles of 30 nm to 60 nm in all products further form agglomerates of different size and interparticle mesoporosity, depending on the type and molar ratios of solvents used.  相似文献   

20.
ZIF-8 membranes have emerged as the most promising candidate for propylene/propane (C3H6/C3H8) separation through its precise molecular sieving characteristics. The poor reproducibility and durability, and high cost, thus far hinder the scalable synthesis and industrial application of ZIF-8 membranes. Herein, we report a semi-solid process featuring ultrafast and high-yield synthesis, and outstanding scalability for reproducible fabrication of ZIF-8 membranes. The membranes show excellent C3H6/C3H8 separation performance in a wide temperature and pressure range, and remarkable stability over 6 months. The ZIF-8 membrane features dimethylacetamide entrapped ZIF-8 crystals retaining the same diffusion characteristics but offering enhanced adsorptive selectivity for C3H6/C3H8. The ZIF-8 membrane was prepared on a commercial flat-sheet ceramic substrate. A prototypical plate-and-frame membrane module with an effective membrane area of about 300 cm2 was used for efficient C3H6/C3H8 separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号