首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bent‐core mesogen consisting of a 4‐cyanoresorcinol unit as the central core and laterally fluorinated azobenzene wings forms four different smectic LC phase structures in the sequence SmA–SmCs–SmCsPAR–M, all involving polar SmCsPS domains with growing coherence length of tilt and polar order on decreasing temperature. The SmA phase is a cluster‐type de Vries phase with randomized tilt and polar direction; in the paraelectric SmCs phase the tilt becomes uniform, although polar order is still short‐range. Increasing polar correlation leads to a new tilted and randomized polar smectic phase with antipolar correlation between the domains (SmCsPAR) which then transforms into a viscous polar mesophase M. As another interesting feature, spontaneous symmetry breaking by formation of a conglomerate of chiral domains is observed in the non‐polar paraelectric SmCs phase.  相似文献   

2.
    
The single gyroid phase as well as the alternating double network gyroid, composed of two alternating single gyroid networks, hold a significant place in ordered nanoscale morphologies for their potential applications as photonic crystals, metamaterials and templates for porous ceramics and metals. Here, we report the first alternating network cubic liquid crystals. They form through self‐assembly of X‐shaped polyphiles, where glycerol‐capped terphenyl rods lie on the gyroid surface while semiperfluorinated and aliphatic side‐chains fill their respective separate channel networks. This new self‐assembly mode can be considered as a two‐color symmetry‐broken double gyroid morphology, providing a tailored way to fabricate novel chiral structures with sub‐10 nm periodicities using achiral compounds.  相似文献   

3.
    
Spontaneous development of chirality in systems composed of achiral molecules is important for new routes to asymmetric synthesis, chiral superstructures and materials, as well as for the understanding of the mechanisms of emergence of prebiotic chirality. Herein, it is shown that the 4,4′-diphenylbenzil unit is a universal transiently chiral bent building block for the design of multi-chained (polycatenar) rod-like molecules capable of forming a wide variety of helically twisted network structures in the liquid, the liquid crystalline (LC) and the crystalline state. Single polar substituents at the apex of tricatenar molecules support the formation of the achiral (racemic) cubic double network phase with Ia d symmetry and relatively small twist along the networks. The combination of an alkyl chain with fluorine substitution leads to the homogeneously chiral triple network phase with I23 space group, and in addition, provides a mirror symmetry broken liquid. Replacing F by Cl or Br further increases the twist, leading to a short pitch double gyroid Ia d phase, which is achiral again. The effects of the structural variations on the network structures, either leading to achiral phases or chiral conglomerates are analyzed.  相似文献   

4.
    
Spontaneous generation of chirality from achiral molecules is a contemporary research topic with numerous implications for technological applications and for the understanding of the development of homogeneous chirality in biosystems. Herein, a series of azobenzene based rod-like molecules with an 3,4,5-trialkylated end and a single n-alkyl chain involving 5 to 20 aliphatic carbons at the opposite end is reported. Depending on the chain length and temperature these achiral molecules self-assemble into a series of liquid and liquid crystalline (LC) helical network phases. A chiral isotropic liquid (Iso1[*]) and a cubic triple network phase with chiral I23 lattice were found for the short chain compounds, whereas non-cubic and achiral cubic phases dominate for the long chain compounds. Among them a mesoscale conglomerate with I23 lattice, a tetragonal phase (Tetbi) containing one chirality synchronized and one non-synchronized achiral network, an achiral double network meso-structure with Ia d space group and an achiral percolated isotropic liquid mesophase (Iso1) were found. This sequence is attributed to an increasing strength of chirality synchronization between the networks, combined with a change of the preferred mode of chirophilic self-assembly between the networks, switching from enantiophilic to enantiophobic with decreasing chain length and lowering temperature. These nanostructured and mirror symmetry broken LC phases exist over wide temperature ranges which is of interest for potential applications in chiral and photosensitive functional materials derived from achiral compounds.  相似文献   

5.
    
Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5’-diphenyl-2,2’-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures. The achiral bicontinuous cubic Ia d phase (gyroid) is replaced upon alkylthio chain elongation by a spontaneous mirror symmetry broken bicontinuous cubic phase (I23) and a chiral isotropic liquid phase (Iso1[*]). Further chain elongation results in removing the I23 phase and the re-appearance of the Ia d phase with different pitch lengths. In the second series an additional tetragonal phase separates the two cubic phase types.  相似文献   

6.
Two triazine‐based unconventional dendrimers were prepared and characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. Differential scanning calorimetry, polarizing microscopy, and powder XRD studies showed that these dendrimers display columnar liquid‐crystalline phases during thermal treatment. This is ascribable to breaking of their C2 symmetry. The molecular conformations of prepared dendrimers were obtained by computer simulation with the MM3 model of the CaChe program in the gas phase. The simulation showed that the conformations of the prepared dendrimers are rather flat and disfavor formation of the LC phase. However, due to C2‐symmetry breaking, the prepared dendrimers have structural isomers in the solid state and thus show the desired columnar phases. This new strategy should be applicable to other types of unconventional dendrimers with rigid frameworks.  相似文献   

7.
8.
    
The twist-bend nematic, NTB, phase has been observed for chiral materials in which chirality is introduced through a branched 2-methylbutyl terminal tail. The chiral twist-bend nematic phase, N*TB, is completely miscible with the NTB phase of the standard achiral material, CB6OCB. The N*TB phase exhibits optical textures with lower birefringence than those observed for the achiral NTB phase, suggesting an additional mechanism of averaging molecular orientations. The N*−N*TB transition temperatures for the chiral materials are higher than the NTB−N transition temperatures seen for the corresponding racemic materials. This suggests the double degeneracy of helical twist sense in the phase is removed by the intrinsic molecular chirality. A square lattice pattern is observed in the N* phase over a temperature range of several degrees above the N*TB–N phase transition, which may be attributed to a non-monotonic dependence of the bend elastic constant.  相似文献   

9.
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self‐assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well‐ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long‐term stable symmetry‐broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.  相似文献   

10.
11.
Bent‐core materials exhibiting lamellar crystals (B4 phase), when dissolved in organic solvents, formed gels with helical ribbons made of molecular monolayers and bilayers, whereas strongly deformed stacks of 5–6 layers were found in the bulk samples. The width and pitch of the helical filaments were governed by molecular length; they both increased with terminal‐chain elongation. It was also found that bulk samples were optically active, in contrast to the corresponding gels, which lacked optical activity. The optical activity of samples originated from the internal structure of the crystal layers rather than from the helicity of the filaments. A theoretical model predicts a strong increase in optical activity as the number of layers in the stack increases and its saturation for few layers, thus explaining the smaller optical activity for gels than for bulk samples. A strong increase and redshift in fluorescence was detected in gels as compared to the sol state.  相似文献   

12.
Unlike thermotropic liquid‐crystalline C3‐symmetric molecules with flexible chains, the herein‐designed fully rigid three‐armed molecules (C3‐symmetric and unsymmetric) create a fancy architecture for the formation of lyotropic liquid crystals in water. First, hollow columns with triple‐stranded helices, analogous to helical rosette nanotubes, are spontaneously constructed by self‐organization of the rigid three‐armed molecules. Then, the helical nanotubes arrange into hexagonal liquid‐crystalline phases, which show macroscopic chirality as a result of supramolecular chiral symmetry breaking. Interestingly, the helical nanotubes constructed by the fully rigid molecules are robust and stable over a wide concentration range in water. They are hardly affected by ionic defects at the molecular periphery, that is, further decoration of functional groups on the molecular arms can presumably be realized without changing the helical conformation. In addition, the formed columnar phases can be aligned macroscopically by simple shear and show anisotropic ionic conductivity, which suggests promising applications for low‐dimensional ion‐conductive materials.  相似文献   

13.
14.
New chiral dimers consisting of a rod‐like and cholesterol mesogenic units are reported to form a chiral twist‐bend nematic phase (NTB*) with heliconical structure. The compressibility of the NTB phase made of bent dimers was found to be as large as in smectic phases, which is consistent with the nanoperiodic structure of the NTB phase. The atomic force microscopy observations in chiral bent dimers revealed a periodicity of about 50 nm, which is significantly larger than the one reported previously for non‐chiral compounds (ca. 10 nm).  相似文献   

15.
16.
    
Since the discovery of the first ferroelectric Rochelle salt, most ferroelectrics have been investigated showing thermally triggered symmetry-breaking phase transition. Although photochromism arising from geometrical isomerization was reported as early as 1867, such photoswitchable ferroelectric crystals have scarcely been developed to date. Herein, we report that salicylideneaniline is a photochromic ferroelectric crystal. Upon photoirradiation, the dielectric constant shows obvious switching between high and low dielectric states, and more importantly, the ferroelectric polarization demonstrates quick and reversible switching. This work opens the gate to developing photoswitchable ferroelectrics, which holds great potential for applications in optically controlled smart devices.  相似文献   

17.
18.
19.
Interest in the smectic liquid-crystalline state of matter received a substantial boost with the discovery by Meyer in the mid-1970s that a chiral smectic C (SmC*) phase exhibits a spontaneous electric polarization, and with the subsequent demonstration by Clark and Lagerwall of the surface-stabilized SmC* ferroelectric liquid crystal at the beginning of the 1980s. Since then, chiral smectic phases and their plethora of polar effects have dominated the research in this field, which today has reached a mature state where the first commercial microdisplay applications are now shipping in millions-per-year quantities. In this Review we discuss some of the topics of highest interest in current smectic liquid crystal research, and address application-relevant research (de Vries-type tilting transitions without defect generation and high-tilt antiferroelectric liquid crystals with perfect dark state) as well as more curiosity-driven research (the nature and origin of the chiral smectic C subphases and their intermediate frustrated states between ferro- and antiferroelectricity).  相似文献   

20.
Bowl-shaped (bowlic) liquid crystals are reviewed and new bowlic materials containing rigid tungsten-oxo calix[4]arene based cores are discussed. Tungsten-oxo calix[4]arenes with 8 and 12 dodecyloxy sidechains have been investigated and exhibit bowlic columnar phases which are stable over approximately a 200° temperature range. The uncomplexed tetra-phenol ligands display only a transient liquid crystallinity on the first heating, and the conformational rigidity provided through tungsten-oxo complexation is necessary for well behaved mesomorphism. For the 8 sidechain analog the clearing point is at 320°C and the addition of four more sidechains results in a lower clearing point at 267°C. Polarized optical microscopy and DSC indicate that the 12 sidechain analog displays a phase with the columns packed in a hexagonal lattice which is conductive to the formation of polar phases. Both complexes exhibit a pronounced tendency to bind Lewis base guests in their cavities, and DMF forms very strong complexes which were spectroscopically characterized. The DMF guest produces large effects on the phase behavior by suppressing mesomorphism and lowering the isotropic points by 115°C and 84°C for the 8 and 12 sidechain compounds respectively. This extreme sensitivity to the DMF guest is conclusive proof that bowlic tungsten-oxo calix[4]arene liquid crystals organize in head-to-tail structures.This paper is dedicated to the commemorative issue on the 50th anniversary of calixarenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号