首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical properties of such disperse carbonaceous materials as acetylene black AD-100, finely divided colloidal graphite (FCG), ultradisperse diamond (UDD), and carbon nanotubes (CNT) are examined. Effect of the nature of disperse carbonaceous supports on bioelectrocatalytic activity of adsorbed peroxidase (POD) in the hydrogen peroxide reduction reaction is investigated. It is shown that the hydrogen peroxide reduction on the biocatalysts studied proceeds in conditions of direct bioelectrocatalysis independently of the disperse-support type. It is also demonstrated that the biocatalysts’ activity depends on the structure and properties of the surface of the supports defining the magnitude of the POD adsorption in an orientation favorable for direct bioelectrocatalysis. Maximum activity is inherent in the catalysts manufactured on the basis of materials with moderate hydrophobic and hydrophilic properties. By the magnitude of the activity in the hydrogen peroxide reduction reaction, depending on the nature of the carbonaceous support, the fabricated catalysts (carbonaceous material with adsorbed POD) form the series AD-100, CNT > FCG > UDD.  相似文献   

2.
Having a strong electron-withdrawing ability, poly(diallyldimethylammonium chloride) (PDDA) was used to create net positive charge for carbon atoms in the nanotube carbon plane via intermolecular charge transfer. The resultant PDDA functionalized/adsorbed carbon nanotubes (CNTs), either in an aligned or nonaligned form, were demonstrated to act as metal-free catalysts for oxygen reduction reaction (ORR) in fuel cells with similar performance as Pt catalysts. The adsorption-induced intermolecular charge-transfer should provide a general approach to various carbon-based efficient metal-free ORR catalysts for oxygen reduction in fuel cells, and even new catalytic materials for applications beyond fuel cells.  相似文献   

3.
Pyrolysis of a bimetallic metal–organic framework (MIL‐88‐Fe/Ni)‐dicyandiamide composite yield a Fe and Ni containing carbonaceous material, which is an efficient bifunctional electrocatalyst for overall water splitting. FeNi3 and NiFe2O4 are found as metallic and metal oxide compounds closely embedded in an N‐doped carbon–carbon nanotube matrix. This hybrid catalyst (Fe‐Ni@NC‐CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm?2 in alkaline solution. When this bifunctional catalyst was further used for H2 and O2 production in an electrochemical water‐splitting unit, it can operate in ambient conditions with a competitive gas production rate of 1.15 and 0.57 μL s?1 for hydrogen and oxygen, respectively, showing its potential for practical applications.  相似文献   

4.
《Journal of Energy Chemistry》2017,26(6):1181-1186
Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery.  相似文献   

5.
We have characterized symmetric solid-state supercapacitors in swagelok cells using film electrodes made of novel hybrid materials based on multiwalled carbon nanotubes (CNT) and phosphomolybdate polyanion (Cs-PMo12) with PVA as binder. These hybrid materials were carried out by Cs-PMo12 adhesion onto previously functionalized CNT, in order to disperse both components at a molecular level and use Cs-PMo12 as energy density enhancer in supercapacitor cells. Our results show high capacitance values (up to 285 F/g at I = 200 mA/g) due to the contribution of Cs-PMo12, which was revealed on the higher energy density values compared to pure CNT electrodes. Additionally, good stability was observed during 500 charge–discharge cycles for most hybrid electrodes. These preliminary results show a new approach to enhance energy density of double layer supercapacitor cells through the introduction of Cs-PMo12, whereas from a material science point of view these materials are innovative, and open the way to search for diverse applications aside from supercapacitors (sensors, catalysts, photovoltaic cells, etc.).  相似文献   

6.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件.  相似文献   

7.
Graphene and carbon nanotubes/fibers (CNT/CNF) hybrid structures are emerging as frontier materials for high-efficiency electronics, energy storage, thermoelectric, and sensing applications owing to the utilization of extraordinary electrical and physical properties of both nanocarbon materials. Recent advances show a successful improvement in the structure and surface area of layered graphene by incorporating another dimension and structural form—three-dimensional graphene (3DG). In this study, vertically aligned CNFs were grown using plasma enhanced chemical vapor deposition on a relatively new form of compressed 3DG. The latter was synthesized using a conventional thermal chemical vapor deposition. The resulting free-standing hybrid material is in-situ N doped during synthesis by ammonia plasma and is produced in the form of a hybrid paper. Characterization of this material was done using electrochemical and spectroscopic measurements. The N doped hybrid showed relatively higher surface area and improved areal current density in electrochemical measurements than compressed pristine 3DG, which makes it a potential candidate for use as an electrode material for supercapacitors, sensors, and electrochemical batteries.  相似文献   

8.
《中国化学快报》2021,32(9):2841-2845
Substituent effect of metal porphyrin molecular catalysts plays a crucial role in determining the catalytic activity of oxygen electrocatalysis. Herein, substituent position effect of Co porphyrins on oxygen electrocatalysis, including the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), was investigated. Two Co porphyrins, namely 2,4,6-OMe-CoP and 3,4,5-OMe-CoP, were selected as the research objects. The ORR and OER performance was evaluated by drop-coating molecular catalysts on carbon nanotubes (CNTs). The resulted 3,4,5-OMe-CoP/CNT exhibited high bifunctional electrocatalytic activities and better long-term stability for both ORR and OER than 2,4,6-OMe-CoP/CNT. Furthermore, when applied in the Zn-air battery, 3,4,5-OMe-CoP/CNT exhibited comparable performance to that with precious metal-based materials. The enhanced catalytic activity may be attributed to the improved charge transfer rate, mass transfer and hydrophilicity. This work provides an effective strategy to further enhance catalytic activity by introducing substituent position effect, which is of great importance for developing more efficient energy-related electrocatalysts.  相似文献   

9.
《Journal of Energy Chemistry》2017,26(6):1077-1093
Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, CO_2 reduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.  相似文献   

10.
The post‐synthesis chemical modification of various porous carbon materials with unsaturated organic compounds is reported. By this method, amine, alcohol, carboxylate, and sulfonic acid functional groups can be easily incorporated into the materials. Different carbonaceous materials with surface areas ranging from 240 to 1500 m2 g?1 and pore sizes between 3.0 and 7.0 nm have been studied. The resulting materials were analyzed by elemental analysis, nitrogen sorption, FTIR spectroscopy, zeta‐potential measurements, thermogravimetric analysis, photoelectron spectroscopy, and small‐angle X‐ray scattering. These analyses indicated that the degree of functionalization is dependent on the nature of the dienophile (reactivity, steric hindrance) and the porosity of the carbon material. As possible applications, the functionalized carbonaceous materials were studied as catalysts in the Knoevenagel reaction and as adsorbents for Pb2+ from aqueous solution.  相似文献   

11.

In this work, the potential of using coconut shell, which is very cheap and readily available, for the production of graphitic nanocarbon three-dimensional networks is investigated. The three-dimensional carbon has been produced via the wet-impregnation of coconut shell powder with a transition metal catalyst. The novel process employed offers low costs and environmental advantages, with biological waste used in place of carbonaceous precursor as the feedstock. Nanocarbon/tin oxide composites were prepared via wet-impregnation and the solvothermal method, using tin chloride solution with the activated nanocarbon. The electrochemical performances of the three-dimensional nanocarbon doped with tin oxide and of activated nanocarbon alone as anode materials were investigated in rechargeable lithium ion batteries. One composite made by using the solvothermal method shows stable cyclic retention up to 100 cycles and delivers a high reversible capacity of about 405 mAh g−1.

  相似文献   

12.
A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 μmol g−1 h−1, leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.  相似文献   

13.
In this work, the potential of using coconut shell, which is very cheap and readily available, for the production of graphitic nanocarbon three-dimensional networks is investigated. The three-dimensional carbon has been produced via the wet-impregnation of coconut shell powder with a transition metal catalyst. The novel process employed offers low costs and environmental advantages, with biological waste used in place of carbonaceous precursor as the feedstock. Nanocarbon/tin oxide composites were prepared via wet-impregnation and the solvothermal method, using tin chloride solution with the activated nanocarbon. The electrochemical performances of the three-dimensional nanocarbon doped with tin oxide and of activated nanocarbon alone as anode materials were investigated in rechargeable lithium ion batteries. One composite made by using the solvothermal method shows stable cyclic retention up to 100 cycles and delivers a high reversible capacity of about 405?mAh g?1.  相似文献   

14.
Porous carbonaceous anode materials have received considerable attention as an alternative anode material, however, there is a critical bottleneck as it suffers from a large irreversible specific capacity loss over several initial cycles owing to undesired surface reactions. In order to suppress undesired surface reactions of porous carbonaceous anode material, here, we suggest a simple and convenient two-step surface modification approach that allows the embedding of an amide functional group on the surface of a porous carbonaceous anode, which effectively improves the surface stability. In this approach, the porous carbonaceous anode material is firstly activated by means of strong acid treatment comprising a combination of H2SO4 and HNO3, and it is subjected to further modification by means of an amide coupling reaction. Our additional systematic analyses confirm that the acid functional group effectively transforms into the amide functional group. The resulting amide-functionalized porous carbon exhibits an improved electrochemical performance: the initial discharge specific capacity is greatly reduced to less than 2,620 mA h g−1 and charge specific capacity is well still remained, indicating stabling cycling performance of the cell.  相似文献   

15.
通过简单的原位化学合成法结合离子交换法制备了Cu修饰氮掺杂碳(Cu-N-C)和Fe/Cu修饰氮掺杂碳纳米管(Fe/Cu-N-C/CNT),并系统评估了2种催化剂作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)对电极在I3-/I-体系中的电化学特性和光伏性能。采用X射线衍射(XRD)、拉曼(Raman)、X射线光电子能谱(XPS)和场发射扫描电镜(FESEM)对合成的催化剂进行组分和形貌表征。结果表明:纳米管状的Fe/Cu-N-C/CNT的石墨化程度比纳米颗粒状的Cu-N-C更高,更有利于I3-还原反应中电荷的传输。光伏性能测试结果表明:基于Fe/Cu-N-C/CNT对电极的DSSCs的光电能量转换效率(power conversion efficiency,PCE)达到7.55%,高于相同测试条件下Cu-N-C(6.99%)和Pt(6.76%)对电极的PCE。50圈连续循环伏安测试结果表明:Fe/Cu-N-C/CNT催化剂具有比Cu-N-C更好的电化学稳定性。  相似文献   

16.
Electrochemical reduction of CO2(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application.On the other hand,doped carbon materials recently demonstrate superior catalytic performance in CERR,which shows the potential to diminish the problems of metal catalysts to some extent.Herein,we present the design and fabrication of nitrogen(N),phosphorus(P)co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO2 to CO,which exhibits an excellent performance with a high faradaic efficiency of 92%(-0.55 V vs.RHE)and up to 24 h stability.A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix.Moreover,the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance.The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants,which effectively modulate properties of the active site.The density functional theory(DFT)calculations were also performed to understand the synergy effects of dopants.It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH*formation.Moreover,the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level.These changes can greatly enhance the activity of the catalysts.From a combined experimental and computational exploration,current work provides valuable insights into the reaction mechanism of CERR on N,P co-doped carbon catalysts,and the influence from synergy effects between dopants,which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction.  相似文献   

17.
The carbon nanotubes supported palladium(Pd/CNT)nanocatalysts were modified by cerium oxides/ hydroxides and their catalytic performances for methanol oxidation were evaluated.Electrochemical measurements indicate that the introduction of cerium remarkably improves the catalytic activity of Pd/CNT catalysts towards methanol oxidation.X-Ray photoelectron spectra results reveal an interaction between palladium and cerium oxides.It is also observed that cerium-modified catalysts have excellent poison resistances,which is attributed to the poison-removal ability of cerium oxides/hydroxides.The highly oxidized cerium oxides/hydroxides have a strong ability to inhibit the accumulation of carbonaceous intermediates on the active sites of Pd catalysts.  相似文献   

18.
Hydrogen evolution at polarized liquid–liquid interfaces [water/1,2‐dichloroethane (DCE)] by the electron donor decamethylferrocene (DMFc) is catalyzed efficiently by the fabricated cobalt sulfide (CoS) nanoparticles and nanocomposites of CoS nanoparticles formed on multi‐walled carbon nanotubes (CoS/CNT). The suspended CoS/CNT nanocomposite catalysts at the interface show a higher catalytic activity for the hydrogen evolution reaction (HER) than the CoS nanoparticles due to the high dispersity and conductivity of the CNT materials, which can serve as the main charge transport pathways for the injection of electrons to attain the catalytic sites of the nanoparticles. The reaction rate increased more than 1000‐fold and 300‐fold by using CoS/CNT and CoS catalysts, respectively, when compared to a non‐catalyzed reaction.  相似文献   

19.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

20.
近年来,光催化裂解水产氢(H2)引起了广泛的关注.储量丰富,环境友好的非金属无机半导体β-SiC(立方相碳化硅)具有适当的带隙(Eg=2.4 eV,ECB=?0.9 V),是一种潜在的光催化剂.受限于SiC光催化剂内部光生电子-空穴对的快速复合,SiC光催化剂的效率较低.已有的关于SiC光催化剂改性的报道主要包括构建纳米SiC,构建SiC异质结,构建碳/SiC材料杂化材料.进一步的研究表明,SiC与碳材料之间通过紧密的界面接触形成了肖特基结,能将SiC表面的光生电子快速转移,抑制光生电子-空穴对的快速复合,从而提高光催化分解水产氢的活性.另一方面,碳纳米管(CNTs)具有良好的电子导电性,一维有序的管腔所形成的电子快速传导路径.因此,将半导体光催化剂与CNTs复合,是一种制备先进的光催化剂的有效策略.本文利用Si蒸气与CNTs之间的气-固反应,在CNTs表面原位生长SiC纳米包覆层,成功地制备了一维同轴核-壳CNTs@SiC纳米管.高分辨率透射电子显微镜图像表明,SiC与CNTs之间是通过Si-C共价键原子接触,并得到X射线光电子能谱的证实.将一部分CNTs@SiC纳米管在空气中750 oC煅烧2 h以除去CNTs,得到纯SiC纳米颗粒作为对比组.紫外-可见吸收光谱表明,CNTs能够促进SiC对光的吸收.荧光发射光谱(PL),瞬态荧光寿命测试,瞬态光电流测试以及交流阻抗(EIS)测试表明,CNTs能够促进SiC表面光生电子的传输与分离,有利于提升光催化效率.以0.1 mol/L Na2S溶液作为牺牲剂,在模拟太阳光(A.M 1.5)照射下,CNTs@SiC纳米管(不额外负载Pt等贵金属作为助剂)的产氢速率为118.5μmol g^-1 h^-1,是纯SiC纳米颗粒(21.1μmol g^-1 h^-1)的5.62倍.经过20 h的光照测试,CNTs@SiC纳米管的光催化性能无明显衰减;X射线衍射测试与扫描电子显微镜图像表明,CNTs@SiC纳米管的结构与形貌反应前后几乎无变化.莫特-肖特基测试表明,CNTs的费米能级比SiC低,因此SiC表面的光生电子能够快速地转移到CNTs,并且CNTs的良好导电性与一维有序的管腔所形成的长的电子传导路径能够进一步地增加电子寿命,促进光生电子参与光催化反应.另外,通过原子连接的同轴核-壳CNTs@SiC纳米管提供了大量且有效的电子传输路径.因此,与纯SiC纳米晶等同类材料相比,无机非金属CNTs@SiC纳米管具有更强的光催化氢活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号