首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schiff bases H2La, H2Lb, and H2Lc have been prepared from the reaction of 2-amino-4-chlorophenol with acetylacetone, benzoylacetone, and dibenzoylmethane, respectively. Organotin(IV) complexes [SnPh2(La)] (1), [SnPh2(Lb)] (2), [SnPh2(Lc)] (3), and [SnMe2(Lc)] (4) have been synthesized from the reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. Spectroscopic data suggest the Schiff bases are completely deprotonated and coordinated tridentate to tin via imine nitrogen and phenolic and enolic oxygen atoms; the coordination number of tin is five. Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activities of the Schiff bases and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La, H2Lc, and all complexes exhibited good activities and have potential as drugs.  相似文献   

2.
Entangled (M3L2)n polyhedral complexes represent a unique class of supramolecular architectures that are stabilized by relatively weak metal–acetylene interactions in cooperation with conventional metal–pyridyl coordination. Counter-anion exchange of these complexes with a nitrate (NO3) ion triggered formal metal insertion between the metal centers, and a heteroleptic ternary coordination mode with acetylenic, pyridyl, and nitrate donors was generated on the metal centers. As a result, the main frameworks of the polyhedral complexes M18L12 and M12L8 were formally extended into a new series of concave polyhedra having the compositions M21L12 and M13L8, respectively. This transformation also resulted in the local disconnection of the highly entangled trifurcate topology of the framework, providing clues toward the skeletal editing of extended and complex three-dimensional (3D) architectures.  相似文献   

3.
Acetylpyridine benzoylhydrazone and related ligands react with common dioxouranium(VI) compounds such as uranyl nitrate or [NBu4]2[UO2Cl4] to form air‐stable complexes. Reactions with 2, 6‐diacetylpyridinebis(benzoylhydrazone) (H2L1a) or 2, 6‐diacetylpyridinebis(salicylhydrazone) (H2L1b) give yellow products of the composition [UO2(L1)]. The neutral compounds contain doubly deprotonated ligands and possess a distorted pentagonal‐bipyramidal structure. The hydroxo groups of the salicylhydrazonato ligand do not contribute to the complexation of the metal. The equatorial coordination spheres of the complexes can be extended by the addition of a monodentate ligand such as pyridine or DMSO. The uranium atoms in the resulting deep‐red complexes have hexagonal‐bipyramidal coordination environments with the oxo ligands in axial positions. The sterical strains inside the hexagonal plane can be reduced when two tridentate benzoylhydrazonato ligands are used instead of the pentadentate 2, 6‐diacetylpyridine derivatives. Acetylpyridine benzoylhydrazone (HL2) and bis(2‐pyridyl)ketone benzoylhydrazone (HL3) deprotonate and form neutral, red [UO2(L)2] complexes. The equatorial coordination spheres of these complexes are puckered hexagons. X‐ray diffraction studies on [UO2(L1a)(pyridine)], [UO2(L1b)(DMSO)], [UO2(L2)2] and [UO2(L3)2] show relatively short U—O bonds to the benzoylic oxygen atoms between 2.328(6) and 2.389(8) Å. This suggests a preference of these donor sites of the ligands over their imino and amine functionalities (U—N bond lengths: 2.588(7)—2.701(6) Å ).  相似文献   

4.
Six new carbonate-bridged Zn2Ln2 cluster complexes derived from salen-type Schiff base ligands [H2La = N, N′-bis(3-methoxysalicylidene)-1,3-diaminopropane and H2Lb = N, N′-bis(3-methoxysalicylidene)- 1,2-diaminoethane] have been synthesized. The bis-imine chain in Schiff base ligands have an obvious influence on the cluster complexes' structures, magnetic and luminescence properties. The carbonate bridging ligand exactly comes from autoimmobilization of carbon dioxide, which may mediate ferromagnetic coupling between Ln3+ ions, favoring magnetocaloric effects and single molecule magnet (SMM) properties. Complexes Zn2Dy2(μ3-CO3)2(La)2(NO3)2(MeOH)2 ( 1 ) and [Zn2Dy2(μ3-CO3)2(Lb)2(NO3)2]·2MeOH ( 2) show field-induced SMM properties; complexes Zn2Tb2(μ3-CO3)2(La)2(NO3)2(MeOH)2 ( 3 ) and [Zn2Tb2(μ3-CO3)2(Lb)2(NO3)2]·2MeOH ( 4 ) display both luminescence and field-induced SMM behaviors; while complexes [Zn2Gd2(μ3-CO3)2(La)2(NO3)2]·2MeOH ( 5 ) and [Zn2Gd2(μ3-CO3)2(Lb)2(NO3)2]·2MeOH ( 6 ) exhibit medium magnetic entropy changes, which are candidates for cryogenic molecular magnetic refrigerants.  相似文献   

5.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Starting from cis-[Ru(dcbpyH2)2Cl2] (1), two new heteroleptic ruthenium(II) complexes, [Ru(dcbpyH2)2(L1)](NO3)2 (L1?=?2-(2′-pyridyl)quinoxaline (2), and [Ru(dcbpyH2)2(L2)](NO3)2 (L2?=?4-carboxy-2-(2′-pyridyl)quinoline (4); dcbpyH2?=?2,2′-bipyridine-4,4′-dicarboxylic acid), were synthesized and spectroscopically characterized. During the preparation of 2 and 4, the homoleptic [Ru(dcbpyH2)3]Cl2 complex (3) was isolated as a side product. Characterization includes IR and Raman spectroscopy, UV-Vis, multinuclear NMR spectroscopy, elemental, and ESI-mass spectrometric analyses.  相似文献   

7.
Reactions of AgO2C2F3 with (E)-N-(pyridylmethylene)aniline in which the pyridyl N is in the p- or m-position yielded two 1-D coordination polymers, [(AgO2C2F3)2(La)2]n (La = (E)-2,6-diisopropyl-N-(pyrid-3-ylmethylene)aniline) (1) and [(AgOC2F3)2(Ld)2]n (Ld = (E)-2,6-diisopropyl-N-(pyrid-4-ylmethylene)aniline) (5), and three discrete complexes, [(AgO2C2F3)2(La)4] (2), [AgO2C2F3(Lb)2] (Lb = (E)-N-(pyrid-4-ylmethylene)aniline) (3) and [(AgOC2F3)2(Lc)4] (Lc = (E)-2,6-dimethyl-N-(pyrid-4-ylmethylene)aniline) (4). The structures were determined by MS, FT-IR and NMR spectroscopies, elemental analysis and single crystal XRD. 1 is an organometallic coordination polymer with silver in η1-arene coordination, but is a discrete dimeric complex 2 when crystallized from warm diethylether. The geometries around silver(I) in 1 and 4 are tetrahedral, ‘inverted seesaw’ in 2 and T-shaped in 3 and in all the anion seems to play a role. Ag(I) centers in 5 have distorted trigonal bipyramid and inverted seesaw geometries. The trifluoroacetate anions in these complexes display variable monodentate and short bridging coordination patterns. All complexes absorb and strongly emit UV-Vis radiation at room temperature.  相似文献   

8.
Four mononuclear copper(II) complexes of two new carboxamide derivatives formulated as [Cu(L1)2](ClO4)2 (1a), [Cu(L1)2](NO3)2 (1b), [Cu(L2)2(H2O)2](ClO4)2 (2a), and [Cu(L2)2(H2O)](NO3)2 (2b) have been isolated in pure form from the reaction of L1 and L2 [where L1 = N-(furan-2-ylmethyl)-2-pyridinecarboxamide and L2 = N-(thiophen-2-ylmethyl)-2-pyridinecarboxamide] with copper(II) salts of perchlorate and nitrate. All the complexes were characterized by physicochemical and spectroscopic tools along with single-crystal X-ray diffraction studies. The structural analyses showed that 1 is monomeric of square planar geometry with copper(II) chelated by two L1 ligands. Complex 2 differs in coordination geometry, being octahedral and distorted square pyramidal. Two L2 ligands occupy the equatorial positions of the octahedral 2a and the basal sites of the pyramidal 2b, with water molecules that complete the coordination sphere in each case. Electrochemical studies using cyclic voltammetry showed a reversible redox behavior of the copper(II) in 1 and 2. The electronic spectroscopic behavior and the trend of one electron equivalent redox potential corresponding to a CuII/CuI couple have also been confirmed by density functional theory calculations. The spectroscopic and viscosity measurement study in tris–HCl buffer suggested an intercalative interaction of 1a and 2 with calf thymus DNA likely due to the stacking between the non-coordinated furan and thiophene chromophore with the base pairs of DNA.  相似文献   

9.
The rhenium(I) carbonyl halide (X = Cl and Br) complexes, [ReX(CO)3{H2(py)L2}] (1a, 1b) and [ReX(CO)3{H2(Fc)L2}] (2a, 2b), of the ligands derived from 2-acetylpyridine and ferrocenyl carbaldehyde derivatives of 2-hydroxybenzoic acid hydrazide [H2(py)L2 and H2(Fc)L2, respectively] have been prepared in good yield. The complexes have been characterized by elemental analysis, MS, IR, UV-Vis and 1H NMR spectroscopic methods and their structures have been elucidated by X-ray diffraction. The ligand forms a five-membered chelate ring but in H2(py)L2 it is Npyridine,N′-bidentate while it is O,N-bidentate in H2(Fc)L2 complexes.Reaction of complex 1a with copper(II) nitrate yields the unexpected aqua complex [Re{H(py)L2}(H2O)(CO)3] (3) where the ligand is monodeprotonated but maintains the coordination mode observed in 1a, as shown by X-ray diffraction. However, reaction of 1b with glycine yields a conformational polymorph of the original compound, 1b′. The X-ray study shows that the orientation of the O-H phenol group against the carbonyl amide group is the main difference.  相似文献   

10.
Two new Schiff base ligands 2-chloro-N′-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (H2La) and 4-fluoro-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HLb) were synthesized and characterized. Their respective oxidovanadium complexes, [VOLa(OMe)(MeOH)]·MeOH (1) and [VO(μ-O)Lb]2 (2), were synthesized and characterized by spectroscopy and single-crystal X-ray diffraction. The coordination sphere of each V atom is octahedral. Both complexes showed selective heterogeneous catalytic properties with 74–98 % conversion, for the oxidation of cyclohexene, cyclopentene, and benzyl alcohol using H2O2 as primary oxidant.  相似文献   

11.
There are challenges in using magnesium coordination complexes as reagents owing to their tendency to adopt varying aggregation states in solution and thus impacting the reactivity of the complexes. Many magnesium complexes are prone to ligand redistribution via Schlenk equilibrium due to the ionic character within the metal–ligand interactions. The role of the supporting ligand is often crucial for providing stability to the heteroleptic complex. Strategies to minimize ligand redistribution in alkaline earth metal complexes could include using a supporting ligand with tunable sterics and electronics to influence the degree of association to the metal atom. Magnesium bis(hexamethyldisilazide) was reacted with salicylaldimines [1L = N‐(2,6‐diisopropylphenyl)salicylaldimine and 2L = 3,5‐di‐tert‐butyl‐N‐(2,6‐diisopropylphenyl)salicylaldimine] in either nondonor (toluene) or donor solvents [tetrahydrofuran (THF) or pyridine]. The structures of the magnesium complexes were studied in the solid state via X‐ray diffraction. In the nondonor solvent, i.e. toluene, the heteroleptic complex bis{μ‐2‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato}‐κ3N,O:O3O:N,O‐bis[(hexamethyldisilazido‐κN)magnesium(II)], [Mg2(C19H22NO)2(C6H18NSi2)2] or [1LMgN(SiMe3)2]2, (1), was favored, while in the donor solvent, i.e. pyridine (pyr), the formation of the homoleptic complex {2,4‐di‐tert‐butyl‐6‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato‐κ2N,O}bis(pyridine‐κN)magnesium(II) toluene monosolvate, [Mg(C27H38NO)2(C5H5N)2]·C5H5N or [{2L2Mg2(pyr)2}·pyr], (2), predominated. Heteroleptic complex (1) was crystallized from toluene, while homoleptic complexes (2) and the previously reported [1L2Mg·THF] [Quinque et al. (2011). Eur. J. Inorg. Chem. pp. 3321–3326] were crystallized from pyridine and THF, respectively. These studies support solvent‐dependent ligand redistribution in solution. In‐situ1H NMR experiments were carried out to further probe the solution behavior of these systems.  相似文献   

12.
The paper reports the synthesis and characterization of vanadium complexes of N,N′-(±)-trans-bis(2,4-dihydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(2,4-dihyroxy-5-nitroacetophenone)-1,2-chyclohexanediamine (H2L2). All the complexes were characterized by elemental analysis, magnetic susceptibility measurements, infrared and electronic spectra, and thermogravimetric analysis. The X-ray patterns of the [VO(L1)] · H2O (I) and [VO(L2)] · H2O (II) complexes show the monoclinic system with the unit cell parameters a = 26.1352, b = 11.7149, c = 6.0401 β = 115.38° and a = 29.3787, b = 12.9398, c = 5.9175 β = 96.84°, respectively. The complexes I and II catalyze the oxidation of styrene in the presence of hydrogen peroxide.  相似文献   

13.
New bimetallic complexes [MTl(SC6F5)2L2Cp] (L = SC6F5, M = Mo (1a), W (1b); L = CO, M = Mo (4)) are characterised; crystal structures of 1a and 4 show unusual polydentate coordination of thallium(I) by [Mo(SC6F5)2L2Cp)] and var. temp. 19F NMR studies, supported by conductivity measurements and cation exchange, indicate restricted rotation of C6F5 groups and reversible decoordination of Tl+ in more polar solvents.  相似文献   

14.
Preparation of the ligands HL1 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O (L1=1a, L2 =1b, L3 =1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 =2a, L2 =2b, L3 =2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1=3a, L2 =3b, L3 =3c). Complexes1a,1b,1c and2a,2b,2c contain bridging exogenous groups, while3a,3b,3c possess only open μ-phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.  相似文献   

15.
Two d10 transition-metal complexes having racemic and enantiomeric 1,2,2-trimethylcyclopentane-1,3-diamine ligands, [Zn(La)2](NO3)2 · CH3CH2OH (1) and [Cd(Lb)2Cl](ClO4) (2) (La = D,L-1,2,2-trimethylcyclopentane-1,3-diamine, Lb = D-(+)-1,2,2-trimethylcyclopentane-1,3-diamine or (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine), were synthesized and characterized by X-ray single-crystal diffraction. They crystallize in the Pbca and P212121 space groups, respectively, and have different coordination numbers and coordination geometry (four-coordinate tetrahedron for Zn(II) in 1 and five-coordinate square-based pyramid for Cd(II) in 2) mainly due to their different ionic radii.  相似文献   

16.
The incorporation of functional groups into the cavity of discrete supramolecular coordination cages (SCCs) will bring unique functions and applications. Here, three dicarboxylate ligands (H2 L1 Cl, H2 L2 Cl and H2 L3 Cl) containing N-heterocyclic carbene (NHC) precursors as linkers were introduced to construct SCCs by combining with two C3-symmertic (CpZr)3(μ3-O)(μ2-OH)3 clusters as three-connect vertices, resulted in a series of rugby-like V2E3 (V=vertex, E=edge) type homoleptic cages ( SCC-1 , SCC-2 and SCC-3 ). However, V4E6-type tetrahedral cages ( SCC-4 and SCC-5 ), incorporating six Au-NHC moieties, were obtained when the corresponding NHC-gold(I) functionalized ligands (H2 L1 Au, H2 L2 Au) were applied. For the first time, we present a trackable CpZr-involved cage to cage conversion to generate a heteroleptic V2E3 cage ( SCC-6 ) from two homoleptic cages ( SCC-2 and SCC-5 ) with different geometries of V2E3 and V4E6. The heteroleptic assembly SCC-6 can also be formed upon a subcomponent displacement strategy. The structural transformation and reassembly processes were detected and monitored by 1H NMR spectroscopy and electrospray-ionization mass spectrometry. The formation of heteroleptic assembly was further supported by single crystal X-ray diffraction analysis. Moreover, homoleptic cage SCC-2 possesses a trigonal bipyramidal cationic cavity allowing the encapsulation of a series of sulfonate anionic guests.  相似文献   

17.
A series of homoleptic ([TbIII(Pc)2]) and heteroleptic ([TbIII(Pc)(Pc′)]) TbIII bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert‐butyl or tert‐butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron‐donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N? Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand‐field effect. In particular, heteroleptic [TbIII(Pc)(Pc′)] complex 4 , which contains one octa(tert‐butylphenoxy)‐substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single‐molecule magnet reported to date.  相似文献   

18.
Abstract

The organotin(IV) complexes, SnPh2La (1), SnMe2La (2), SnBu2La (3), SnPh2Lb (4), SnMe2Lb (5), SnPh2Lc (6), SnMe2Lc (7), and SnBu2Lc (8) were obtained by reaction of SnR 2Cl2 (R = Ph, Me, and Bu) with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2La), 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide (H2Lb), and 1-(2-hydroxy-3-methoxybenzylidene)-4-phenylthiosemicarbazide (H2Lc). The synthesized complexes have been investigated by elemental analysis, IR, 1H NMR, and 119Sn NMR spectroscopy. The data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is 5. The in vitro antibacterial activities of the ligands and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and compared with the standard antibacterial drugs.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

19.
《印度化学会志》2021,98(4):100049
The new azo-imine ligands 2,4-di-tert-butyl-6-((2-((2-hydroxyphenyl)diazenyl) phenylimino)methyl)phenol, H2L1, 1a, and 2,4-di-tert-butyl-6-((2-((2-hydroxyphenyl) diazenyl)p-chlorophenylimino)phenol, H2L2, 1b, were prepared. Reaction of H2L1;1a, and H2L2;1b, with uranyl nitrate hexahydrate afforded the mononuclear complexes of compositions [U(O)2(L1)(H2O)]; 2a, and [U(O)2(L2)(H2O)]; 2b, complexes respectively. The newly synthesised ligands (1a and 1b) and the complexes (2a and 2b) were characterised unequivocally. The x-ray structure of 2a was determined. The tetradentate dianionic ligand (L1)2- coordinated the uranium ion equatorially with a water molecule in the same plane. Two axially coordinated oxo ligands completed the overall pentagonal bipyramid geometry around U(VI) ion. Structural pattern, electron transfer properties (oxidation near 1.32 ​V vs Ag/AgCl) and electronic transitions of [U(O)2(L1)(H2O)]; 2a, and [U(O)2(L2)(H2O)]; 2b have been rationalized by DFT calculations.  相似文献   

20.
The synthesis and the crystal structures of the complexes [Cu(LI)2](ClO4) ( 1 ) and [Cu(LI)(CH3CN)2(ClO4)2] ( 2 ) are reported. 1 crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 13.169(4), b = 12.289(3), c = 14.732(3) Å, β = 109.03(2)° and Z = 4. Copper(I) is coordinated to four N atoms of the two 1,10‐Phenanthroline‐5,6‐dione (LI) ligands with a two‐fold axis passing between the ligands. The copper(II) compound 2 crystallizes in the orthorhombic space group Pbn21 with unit cell dimensions of a = 7.498(5), b = 23.492(7), c = 12.363(4) Å and Z = 4. Copper(II) coordination can be described as a distorted octahedron with the N donor atoms of one LI ligand and of two molecules of CH3CN occupying the equatorial positions completed by two oxygen atoms of the two perchlorate molecules in the axial positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号