首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fast-atom bombardment (FAB) mass spectrometry in the negative ionization mode enables the sputtering into the gas phase of the ruthenium complexes [Ru(2,2′-bipyridine[bpy])2(2,5-bis) (pyrydil)pyrazine[dpp])](PF6)2; [Ru(bpy)2,(2,3dpp)](PF6)2;[Ru(bpy)2,(2,3-dpp-Me)]( PF6)3; and [Ru(bpy)2(?-2,3-dpp)]2 RuCl2(PF6)4 as intact radical anions. These data, combined with those avaiiable from the positive FAB spectra allow a full characterization of the analytes.  相似文献   

2.
Two new bichromophoric ruthenium(II) complexes, [Ru(bpy)2(bpy‐CM)](PF6)2 and [Ru(bpy)2(bpy‐CM343)](PF6)2 (bpy=2,2′‐bipyridine, CM=coumarin) with appended coumarin ligands have been designed and synthesized. The energy‐transfer‐based sensing of esterase by the complexes has been studied by using UV/Vis and luminescence spectroscopic methods. The cytotoxicity and the cellular uptake of one of the complexes have also been investigated.  相似文献   

3.
本文合成了3个新钌(Ⅱ)配合物,[Ru(bpy)2(SB)](PF62、[Ru(bpy)(SB)2](PF62和[Ru(SB)3](PF62(bpy=2,2’-bipyridine,SB=4,5-diaza-9,9’-spirobifluorene),通过核磁和元素分析对配合物的结构进行了确定。[Ru(bpy)2(SB)](PF62通过X射线单晶衍射确认了结构。研究了配合物的光物理性能。结果表明[Ru(bpy)2(SB)](PF62在乙腈中的发桔红光,波长为606nm,量子产率约为0.0012。在同样条件下[Ru(bpy)(SB)2](PF62和[Ru(SB)3](PF62的发光非常微弱甚至几乎没有发光。还研究了这些配合物的电致化学发光性能。随着配体中SB含量的增加,发光的峰电压从1.36V增加到1.58V,相对发光强度从731降低到52。  相似文献   

4.
合成了3个钌髤配合物,[Ru(bpy)2(SB)](PF6)2、[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2(bpy=2,2′-bipyridine,SB=4,5-diaza-9,9′-spirobifluorene),通过核磁和元素分析对配合物的结构进行了确定。[Ru(bpy)2(SB)](PF6)2通过X射线单晶衍射确认了结构。研究了配合物的光物理性能。结果表明[Ru(bpy)2(SB)](PF6)2在乙腈中的发桔红光,波长为606 nm,量子产率约为0.001 2。在同样条件下[Ru(bpy)(SB)2](PF6)2和[Ru(SB)3](PF6)2的发光非常微弱甚至几乎没有发光。还研究了这些配合物的电致化学发光性能。随着配体中SB含量的增加,发光的峰电压从1.36 V增加到1.58 V,相对发光强度从731降低到52。  相似文献   

5.
In the title complex, [Ru(bpy)(dppy)2(CO)2](PF6)2 (bpy = 2,2′‐bipyridine, dppy = 2‐(diphenylphosphino)pyridine), the ruthenium atom exhibits a slightly distorted octahedral coordination with the carbonyl ligands in cis positions. In addition, two dppy ligands coordinate to the ruthenium center through the phosphorus atoms in mutually trans positions and two pyridyl nitrogen atoms of the dppy direct toward two carbonyl ligands. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Subtle ligand modifications on RuII-polypyridyl complexes may result in different excited-state characteristics, which provides the opportunity to tune their photo-physicochemical properties and subsequently change their biological functions. Here, a DNA-targeting RuII-polypyridyl complex (named Ru1 ) with highly photosensitizing 3IL (intraligand) excited state was designed based on a classical DNA-intercalator [Ru(bpy)2(dppz)] ⋅ 2 PF6 by incorporation of the dppz (dipyrido[3,2-a:2′,3′-c]phenazine) ligand tethered with a pyrenyl group, which has four orders of magnitude higher potency than the model complex [Ru(bpy)2(dppz)] ⋅ 2 PF6 upon light irradiation. This study provides a facile strategy for the design of organelle-targeting RuII-polypyridyl complexes with dramatically improved photobiological activity.  相似文献   

7.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

8.
A novel hybrid complex system of ruthenium polypyridyl complexes anchored by dicobalt carbonyl units, [Ru(bpy)2{phen-C{Co2(CO)4(dppm)}C-tolyl}](PF6)2 (1) and [Ru(bpy)2{tolyl-C{Co2(CO)4(dppm)}C-phen-C{Co2(CO)4(dppm)}C-tolyl}](PF6)2 (2), has been prepared from the dicobalt carbonyl complex Co2(CO)6(dppm) (dppm = bis(diphenylphosphino)methane) and the ruthenium complex [Ru(bpy)2(phen--tolyl)](PF6)2 (3) or [Ru(bpy)2(tolyl--phen--tolyl)](PF6)2 (4).The present Ru-Co2 hybrid complexes 1 and 2 are nonluminescent at room temperature, although precursor ruthenium polypyridyl complexes, such as 3 and 4, clearly show phosphorescence from the 3MLCT excited state. The emission quenching of these hybrid complexes indicates the intramolecular energy transfer from the ruthenium polypyridyl unit to the dicobalt carbonyl unit(s) and then to the ground state by a radiationless deactivation process accompanied by a vibrational relaxation of the dicobalt carbonyl unit(s). This interpretation is supported by spectral change measurements along with constant potential electrolysis and electrochemical data.  相似文献   

9.
Chiral eniminium salts, prepared from α,β‐unsaturated aldehydes and a chiral proline derived secondary amine, underwent, upon irradiation with visible light, a ruthenium‐catalyzed (2.5 mol %) intermolecular [2+2] photocycloaddition to olefins, which after hydrolysis led to chiral cyclobutanecarbaldehydes (17 examples, 49–74 % yield), with high diastereo‐ and enantioselectivities. Ru(bpz)3(PF6)2 was utilized as the ruthenium catalyst and laser flash photolysis studies show that the catalyst operates exclusively by triplet‐energy transfer (sensitization). A catalytic system was devised with a chiral secondary amine co‐catalyst. In the catalytic reactions, Ru(bpy)3(PF6)2 was employed, and laser flash photolysis experiments suggest it undergoes both electron and energy transfer. However, experimental evidence supports the hypothesis that energy transfer is the only productive quenching mechanism. Control experiments using Ir(ppy)3 showed no catalysis for the intermolecular [2+2] photocycloaddition of an eniminium ion.  相似文献   

10.
The ruthenium tricarbonyl derivative [Ru(CO)3(sha)] (1), was synthesized from reaction of [Ru3(CO)12] with N-salicylidene-2-hydroxyaniline (shaH2) Schiff base. The corresponding reactions of the ruthenium cluster with shaH2 in presence of a secondary ligand L,L?=?pyridine and triphenyl phosphine resulted in the formation of the dicarbonyl derivatives [Ru(CO)2(shaH2)(L)] (2, 3). In the presence of L?=?2-aminobenzimidazole or thiourea, two complexes [Ru(CO)2(sha)(L)] (4, 5) were formed and the shaH2 ligand bonded to ruthenium oxidatively. The bipyridine(bpy) derivative had the molecular formula [Ru(CO)2(shaH)(bpy)] (6), with shaH coordinated bidentate. All complexes were characterized by elemental analysis and mass, IR, 1H NMR and UV–Vis spectroscopy. The spectroscopic studies of these complexes revealed several structural arrangements and different tautomeric forms.  相似文献   

11.
The complexes [Ru(bpy)2(pyESO)](PF6)2 and [Os(bpy)2(pyESO)](PF6)2, in which bpy is 2,2′‐bipyridine and pyESO is 2‐((isopropylsulfinyl)ethyl)pyridine, were prepared and studied by 1H NMR, UV–visible and ultrafast transient absorption spectroscopy, as well as by electrochemical methods. Crystals suitable for X‐ray structural analysis were grown for [Ru(bpy)2(pyESO)](PF6)2. Cyclic voltammograms of both complexes provide evidence for S→O and O→S isomerization as these voltammograms are described by an ECEC (electrochemical‐chemical electrochemical‐chemical) mechanism in which isomerization follows Ru2+ oxidation and Ru3+ reduction. The S‐ and O‐bonded Ru3+/2+ couples appear at 1.30 and 0.76 V versus Ag/AgCl in propylene carbonate. For [Os(bpy)2(pyESO)](PF6)2, these couples appear at 0.97 and 0.32 V versus Ag/AgCl in acetonitrile, respectively. Charge‐transfer excitation of [Ru(bpy)2(pyESO)](PF6)2 results in a significant change in the absorption spectrum. The S‐bonded isomer of [Ru(bpy)2(pyESO)]2+ features a lowest energy absorption maximum at 390 nm and the O‐bonded isomer absorbs at 480 nm. The quantum yield of isomerization in [Ru(bpy)2(pyESO)]2+ was found to be 0.58 in propylene carbonate and 0.86 in dichloroethane solution. Femtosecond transient absorption spectroscopic measurements were collected for both complexes, revealing time constants of isomerizations of 81 ps (propylene carbonate) and 47 ps (dichloroethane) in [Ru(bpy)2(pyESO)]2+. These data and a model for the isomerizing complex are presented. A striking conclusion from this analysis is that expansion of the chelate ring by a single methylene leads to an increase in the isomerization time constant by nearly two orders of magnitude.  相似文献   

12.
Cyclometallated ruthenium complexes typically exhibit red-shifted absorption bands and lower photolability compared to their polypyridyl analogues. They also have lower symmetry, which sometimes makes their synthesis challenging. In this work, the coordination of four N,S bidentate ligands, 3-(methylthio)propylamine (mtpa), 2-(methylthio)ethylamine (mtea), 2-(methylthio)ethyl-2-pyridine (mtep), and 2-(methylthio)methylpyridine (mtmp), to the cyclometallated precursor [Ru(bpy)(phpy)(CH3CN)2]+ (bpy=2,2′-bipyridine, Hphpy=2-phenylpyridine) has been investigated, furnishing the corresponding heteroleptic complexes [Ru(bpy)(phpy)(N,S)]PF6 ([ 2 ]PF6–[ 5 ]PF6, respectively). The stereoselectivity of the synthesis strongly depended on the size of the ring formed by the Ru-coordinated N,S ligand, with [ 2 ]PF6 and [ 4 ]PF6 being formed stereoselectively, but [ 3 ]PF6 and [ 5 ]PF6 being obtained as mixtures of inseparable isomers. The exact stereochemistry of the air-stable complex [ 4 ]PF6 was established by a combination of DFT, 2D NMR, and single-crystal X-ray crystallographic studies. Finally, [ 4 ]PF6 was found to be photosubstitutionally active under irradiation with green light in acetonitrile, which makes it the first cyclometallated ruthenium complex capable of undergoing selective photosubstitution of a bidentate ligand.  相似文献   

13.
The conjugated carboxy-functionalized terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 and [2]rotaxane by self-assembly of [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with β-cyclodextrin are reported as sensitizer for dye-sensitized solar cells (DSSCs), where tdctpy?=?4′-p-tolyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine, dctpy?=?4,4″-dicarboxy-2,2′?:?6,2″-terpyridine and dctpy-(ph)4-dctpy represents a bridging ligand where two 4,4″-dicarboxy-2,2′?:?6′,2″-terpyridine units are connected through four phenyl spacers in the 4′-position. The DSSCs fabricated utilizing these materials give typical electric power conversion efficiency of 0.013–0.523% under air mass (AM) 1.5, 100?mW?cm?2 irradiation at room temperature. The terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with conjugated-bridge chains displayed much higher conversion efficiency compared with the carboxy-functionalized terpyridyl monometal ruthenium complex [tdctpy-Ru-(idctpy)][PF6]2, where idctpy?=?4′-p-iodophenyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine. [2]Rotaxane displayed the highest electric power conversion efficiency of 0.523% when β-cyclodextrin was introduced into the conjugated terpyridyl bimetal ruthenium complex and formed [2]rotaxane.  相似文献   

14.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

15.
《Tetrahedron: Asymmetry》1998,9(22):4089-4097
In order to develop methodology for the selective preparation of complex molecular structures with potential photochemical or electron transfer functions, the diastereoselective synthesis of multiple ruthenium tris(bipyridine) complexes tethered to a central calix[6]arene core was investigated. Applying recently developed methodology, the resolved precursor cis-Δ-[Ru(bpy)2(DMSO)Cl]PF6 (98.6% ee) was efficiently reacted with a novel calix[6]arene derivative, to give the tetrakis[Ru(bpy)2(bpy′)]calix[6]arene derivative (9) with almost complete retention of absolute stereochemistry at each of the four metal centres, as seen by the unusually strong molar circular dichroism (CD) spectrum. The synthesis of racemic 9 was also carried out, and demonstrated to have an inactive CD spectrum.  相似文献   

16.
A novel ruthenium bisbipyridine complex, [Ru(bpy)2(hpzb)](PF6)2 (1) (hpzb = hexakis(pyrazol-1-yl)benzene) was obtained in the reaction between [Ru(bpy)2Cl2], the tritopic ligand hpzb and NH4PF6. A high selectivity has been found in the reaction and when the hpzb ligand was made to react with more than one ruthenium fragment, it coordinated selectively only to the first metallic fragment, and it was not possible to introduce two or three ruthenium centres. A similar complex with a deuterated bipyridine has also been obtained. The reaction with the methylated ligand hexakis(3,5-dimethylpyrazol-1-yl)benzene does not take place. A complete assignment of all the proton and carbon NMR signals of 1 was carried out. The orientation of the free pyrazolyl groups is also discussed. The redox properties and the anticancer activity of complex 1 have been studied.  相似文献   

17.
The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2′:6′,2′′-terpyridine) has been investigated. 1H NMR kinetic experiments of the dissociation of the chloro ligand in D2O for the complexes [Ru(tpy)(bpy)Cl]Cl ( 1 , bpy=2,2’-bipyridine) and [Ru(tpy)(dppz)Cl]Cl ( 2 , dppz=dipyrido[3,2-a:2′,3′-c]phenazine) as well as the binuclear complex [Ru(bpy)2(tpphz)Ru(tpy)Cl]Cl3 ( 3 b , tpphz=tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1 – 5 ( 4 =[Ru(tbbpy)2(tpphz)Ru(tpy)Cl](PF6)3, 5 =[Ru(bpy)2(tpphz)Ru(tpy)(C3H8OS)/(H2O)](PF6)3, tbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1 > 2 > 5 ≥ 3 > 4 . This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3 . Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.  相似文献   

18.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

19.
5,5′-Bi-5H-cyclopenta[2,1-b;3,4-b′]dipyridinylidene( 1 ) was synthesized in three steps from 9,10-phenanthroline and characterized by UV/VIS and NMR spectroscopy, mass spectrometry, and cyclic voltammetry. Its ability to act as a bridging ligand is demonstrated by the synthesis of the complexes [Ru(bpy)2( 1 )](PF6)2 ( 6 ) and [{Ru(bpy)2}2( 1 )](PF6)4 ( 7 ) (bpy = 2,2′-bipyridine).  相似文献   

20.
The condensation of 3-amino-1H-1,2,4-triazole with benzaldehyde and terephthalaldehyde provides the bidentate and tetradentate Schiff bases 1,2,4-triazolo-3-imino-benzene L1H and 1,4-bis(1,2,4-triazolo-3-imino)benzene L2H2, respectively. The well characterized Schiff bases were allowed to react with cis-Ru(bpy)2Cl2 · 2H2O. Isomers of the mononuclear complexes Ru(bpy)2L1]PF6 · NH4PF6 (1a, N4) and [Ru(bpy)2L1]PF6 · 0.5NH4PF6 (1b, N2), and the dinuclear Ru(II) complexes [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 (2a, N4N4), [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 · 2H2O (2b, N2N2) and [Ru(bpy)2L2Ru(bpy)2](PF6)3 · NH4PF6 (2c, Ru(II)-Ru(III)) were separated by column chromatography and characterized by their elemental analysis, FAB mass and spectral (IR, NMR, UV–Vis) data. The data obtained suggest that the ligands are bound to the metal centre via the N4 and N2 atoms of the triazole moiety along with the N (imine) atom. The complexes display metal-to-ligand charge-transfer (MLCT) transitions in the visible region from the dπ(RuII) → πL transition. Highly intense ligand-based π→π transitions are observed in the UV region. A dual emission occurs from the N2 and N2N2 isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号