首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The halopentacarbonylmanganese(I) complexes, Mn(CO)5X(X = Cl, Br, I), react with PPh(CH2CH2PPh2)2(Triphos) to give two isomers of fac-Mn(CO)3(Triphos)X in which the Triphos ligand is only coordinated to the manganese atom through two of its three phosphorus atoms. The fac-Mn(CO)3(Triphos)X complexes may be considered as “monodentate ligands” in that the free phosphorus atoms readily displace CO and other groups in a variety of metal carbonyls to give a series of novel bimetallic complexes, e.g. Br(CO)3Mn(Triphos)Cr(CO)5 and I(CO)3Mn(Triphos)Mn(CO)4I. The reactions of Mn(CO)2[P(OMe)3](Triphos)Br with Cr(CO)5THF and Mn(CO)3(Triphos)X(X = Br, I) with O2 (and O3) to produce Br(CO)2[P(OMe)3]Mn(Triphos)Cr(CO)5 and fac-Mn(CO)3(Triphos=O)X, respectively, are also described. The IR-active COstretching absorptions exhibited by the new complexes are discussed.  相似文献   

2.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

3.
(SO4)-rich silicate analogue borosulfates are able to stabilise cationic cluster-like and chain-like aggregates. Single crystals of [Au3Cl4][B(S2O7)2] and [Au2Cl4][B(S2O7)2](SO3) were obtained by solvothermal reaction with SO3, and the electronic properties were investigated by means of density functional theory–based calculations. [Au3Cl4][B(S2O7)2] exhibits a cluster-like cation, and the cationic gold-chloride strands in [Au2Cl4][B(S2O7)2](SO3) are found to resemble one-dimensional metallic wires. This is confirmed by polarisation microscopy.  相似文献   

4.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

5.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

6.
[Au2Pt2(PPh3)4(CN-xylyl)4](PF6)2 (CN-xylyl = 2,6-dimethylphenylisocyanide) has been synthesised from [Pt(C2H4)(PPh3)2] and [Au(CN-xylyl)2]+ in CH2Cl2 and in the presence of an excess of CN-xylyl. A single crystal X-ray diffraction study has demonstrated that the metal atoms define a flattened butterfly with the gold atoms occupying the higher connectivity sites and forming a short bond of length 2.590(2) Å. The platinum—gold distances lie in the range 2.710(2)–3.026(2) Å.  相似文献   

7.
Some Reactions with [Mo6Cl8]Cl4 The reaction of [Mo6Cl8]Cl4 with different chemical agents has been investigated: The methoxylation depends on the CH3O? concentration in CH3OH. The reaction with HF leads to a partial fluorinated [Mo6Cl8] product. With NH4F (NH4)2[Mo6Cl8]F6 in formed, the hydrolysis of which leads to [Mo6Cl8]F3(OH) · 2.5 H2O. This compound can be decomposed thermically into [Mo6Cl8]O2. [Mo6Br8]F62? on hydrolysis leads to [Mo6Br8]F3(OH) · 5 H2O. With CsF Cs2[Mo6Cl8]F6 is formed, which by hydrolysis is transformed into [Mo6Cl8]F3(OH) · 2.5 H2O and possibly to [Mo6Cl8]F4 · xH2O(?). In reaction of [Mo6Cl8]Cl4 with H2SO4 one gets [Mo6Cl8](SO4)2. Salts e. g. [(C6H5)4As]2[Mo6Cl8](OC6F5)6 and adducts e. g. [Mo6Cl8](OC6F5)4 · 2 HMPA are prepared. The compounds have been characterized by X-ray powder-diagramms and by IR-spectra.  相似文献   

8.
Treatment of Au2(Ph2PCH2CH2PPh2)Cl2 with one equivalent of the [Ru5C(CO)14]2− dianion in the presence of TlPF6 gives Ru5C(CO)14Au2(Ph2PCH2CH2PPh2) (1) in good yield and the [{Ru5C(CO)14}2Au2(Ph2PCH2CH2PPh2)]2− (2) anion in low yield. Complex 2 becomes the major product if 2 equivalents of [Ru5C(CO)14]2− are used. Reaction of [Au2(Ph2PCH2CH2PPh2)Cl2] with 3 equivalents of [H3Os4(CO)12] anion in the presence of TlPF6 affords {H3Os4(CO)12}2Au2(Ph2PCH2CH2PPh2) (3) in reasonable yield. X-ray diffraction studies of 1 and 3 show that they contain the [Au2(Ph2PCH2CH2PPh2)]2+ fragment in different coordination modes.  相似文献   

9.
Synthesis, Crystal Structure and Spectroscopic Characterization of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 The reaction of [(AuCl)2dppm] (dppm = Ph2PCH2PPh2) with P(Ph)(SiMe3)2 in CHCl3 results in the formation of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 ( 1 ), the crystal structure of which was determined by single crystal X‐ray analysis (space group P21/c, a = 1425.3(3) pm, b = 2803.7(6) pm, c = 2255.0(5) pm, β = 95.00(3)°, V = 8977(3)·106 pm3, Z = 2). The dication in 1 consists of two Au6P3 units built by highly distorted Au3P and Au2P2 heterotetrahedra, connected via four bidentate phosphine ligands. Additionally, the compound was characterized by IR‐, UV‐ and NMR spectroscopy. The 31P{1H} NMR spectrum is discussed in detail.  相似文献   

10.
Gold(I) dicarbene complexes [Au2(MeIm‐Y‐ImMe)2](PF6)2 (Y=CH2 ( 1 ), (CH2)2 ( 2 ), (CH2)4 ( 4 ), MeIm=1‐methylimidazol‐2‐ylidene) react with iodine to give the mixed‐valence complex [Au(MeIm‐CH2‐ImMe)2AuI2](PF6)2 ( 1 aI ) and the gold(III) complexes [Au2I4(MeIm‐Y‐ImMe)2](PF6)2 ( 2 cI and 4 cI ). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm‐CH2‐ImMe)2](PF6)2 ( 1 cCl ) and [Au2Cl4(MeIm‐(CH2)2‐ImMe)2](Cl)2 ( 2 cCl‐Cl ) (as main product); remarkably in the case of complex 2 , the X‐ray molecular structure of the crystals also shows the presence of I‐Au‐Cl mixed‐sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2 and I2 to give the successive formation of the mixed‐valence gold(I)/gold(III) n aX and gold(III) n cX (excluding compound 1 cI ) complexes. However, complex 3 affords with Cl2 and Br2 the gold(II) complex 3 bX [Au2X2(MeIm‐(CH2)3‐ImMe)2](PF6)2 (X=Cl, Br), which is the predominant species over compound 3 cX even in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations.  相似文献   

11.
Three Oxidation Paths of [Ta6Cl12]2+ ([Ta6Br12]2+ and [Nb6Cl12]2+) [Ta6Cl12]2+ is oxidized autocatalytically to [Ta6Cl12]4+ by HNO3. The titration of [Ta6Cl12]2+ with KBrO3 (in HBr-containing solutions) or with Ce4+ or K2Cr2O7 (in HNO3-containing solutions) leads to a clear [Ta6Cl12]3+ step. The further titration leads beside [Ta6Cl12]4+ to the formation of Ta2O5(· xH2O). [Ta6Cl12]2+ behaves with KBrO3(+ HBr) equally, but the formation of [Ta2O5](· xH2O) is only small. [Nb6Cl12]2+ (22°C) titrated with Ce(ClO4)4 in 2n HClO4 gives the first potential step nearby exact ([Nb6Cl12]3+) and at a very slow titration in a second step a precipitation of Nb2O5(· xH2O) occurs, which adsorbed Ce4+ additionally. At ?15°C with Ce(ClO4)4 the first potential step was exactly at [Nb6Cl12]2+→3+, while the second step needs a distinct additional consumption of titer. (Formation of [Nb6Cl12]4+ and beside it [Nb2O5](· xH2O)). From the titration curves and sections of its normal progress in all cases we get the normal potentials 2+/3+ and 3+/4+ with an accuracy of ± 0.01 volt. In alkaline solution the complexes are oxidized with air-oxygen to [M6X12](OH)62?, while the Br-containing complexes suffer hydrolysis afterwards.  相似文献   

12.
Synthesis and Structure of K[Au(AuCl)(AuPPh3)8)](PF6)2 Photolysis of a mixture of Ph3PAuCl and Ph3PAuN3 (1 : 3) in toluene/THF yields in the presence of Na2[(C5H5)V(CO)3] the new cluster cation [Au(AuCl)(AuPPh3)8]+. It crystallizes from CH2Cl2 after addition of KPF6 as K[Au(AuCl)(AuPPh3)8](PF6)2 · 4 CH2Cl2. The compound forms a tetragonal structure with the space group P4/n and a = 2552.6(3), c = 1401.1(1) pm, Z = 2. The cluster cations with a spheroidal topology are built up of a centered Au8 crown whose central gold atom in addition binds a AuCl group. The cluster occupies with its center and AuCl group a fourfold axis of the space group. The radial bonds between the central and the peripheral Au atoms are in the range of 263.7 to 268.4 pm, while the distances between the peripheral atoms are longer with 291.7 to 350.9 pm.  相似文献   

13.
《Polyhedron》1987,6(8):1711-1713
The cation in the ruthenium blue [Ru2(NH3)6Cl3](BPh4)2 is a trichloro-bridged bioctahedral dimer, with a RuRu distance of 2.753 Å.  相似文献   

14.
In contrast to the well‐known 2‐norbornyl cation, the structure of which was a matter of long debate until its pentacoordinated nature was recently proven by an X‐ray structure, the pentagonal‐pyramidal dication of hexamethylbenzene has received considerably less attention. This species was first prepared by Hogeveen in 1973 at low temperatures in magic acid (HSO3F/SbF5), for which he proposed a non‐classical structure (containing a hexacoordinated carbon) based on NMR spectroscopy and reactivity studies, but no X‐ray crystal structure has been reported. C6(CH3)62+ can be obtained through the dissolution of hexamethyl Dewar benzene epoxide in HSO3F/SbF5 and crystallized as the SbF6 salt upon addition of excess anhydrous hydrogen fluoride. The crystal structure of C6(CH3)62+ (SbF6)2⋅HSO3F confirms the pentagonal pyramidal structure of the dication. The apical carbon is bound to one methyl group (distance 1.479(3) Å) and to the five basal carbon atoms (distances 1.694(2)–1.715(3) Å).  相似文献   

15.
In the reactions of [Au8(PPh3)7]2+, [Au8(PPh3)8]2+ and [Au9(PPh3)8]3+ with RNC (R = isopropyl and t-butyl) in dichloromethane [Au8(PPh3)7CNR]2+ is initially, and is then converted into [Au9(PPh3)6(CNR)2]3+ via various intermediates. [Au9(PPh3)6(CNR)2]3+ reacts with I at low temperature (−78°C) in methanol to yield [Au11(PPh3)7(CNR)2I]2+, but when the reaction is carried out at room temperature Au11 (PPh3)6(CNR)I3 is formed. The cluster compounds have been characterised by elemental analysis, 31P{1H} NMR, conductivity measurements, IR and 197Au Mössbauer spectroscopy. The reactions of the clusters with amines to form carbene clusters are very slow, and the reasons for this are considered.The structure of [Au11C134H112IN2P7](PF6 was determined by X-ray diffraction. Mr = 3796.39 cubic, space group 143d, a 37.955(12) Å, V 54677.2 Å3, Z = 16, Dc = 2.21 Mg m−3, Mo-Kα radiation (graphite crystal monochromator, λ 0.71069 Å), μ(Mo-Kα) 125.2 cm−1, F(000) = 33510.3, T 293 K. Final conventional R-factor = 0.048, Rw = 0.062 ofr 1867 unique reflections and 198 variables. The Au-skeleton is the same as in Au11(PPh3)8I3 having C3v symmetry with one central and 10 peripheral Au atoms.  相似文献   

16.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

17.
18.
A summary of the chemistry of the tetranuclear Au(I) amidinate complexes is presented. Tetranuclear Au(I) amidinate clusters are produced by the reaction of the sodium salt of a amidine ligand with the gold precursor Au(THT)Cl in a (1:1) stoichiometry. The structures of the tetranuclear Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, C6H3‐3,5‐Cl, C6H4‐4‐Me, C6H4‐3‐CF3, C6F5, C10H7 and the tetranuclear Au4[(PhNC(Ph)NPh]4 and Au4[PhNC(CH3)NPh]4 have been characterized by X‐ray crystallography. The average Au···Au distance between adjacent Au(I) atoms is ?3.0 Å, typical of compounds having an aurophilic interaction. The four gold atoms are located at the corner of a rhomboid with the amidinate ligands bridged above and below the near plane of the four Au(I) atoms. The angles at Au···Au···Au in the cyclic units are between 70° and 116°. The tetranuclear gold(I) amidinate clusters each show different luminescence behavior. The tetranuclear clusters Au4[(ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐3‐CF3, Ar = C6H4‐4‐Me and Ar = C6H4‐3,5‐Cl are the first tetranuclear gold(I) cluster species from group 11 elements that show fluorescence at room temperature. The tetranuclear naphthyl derivative Ar = C10H7 is luminescent only at 77 K. The pentafluorophenyl derivative Ar = C6F5 does not show any photoluminescence in the solid state nor in the solution. The lifetimes of the naphthyl and trifluoromethylphenyl complexes are in the millisecond range indicating phosphorescent processes. Electrochemical and chemical oxidation studies of the tetranuclear Au(I) amidinate clusters are presented. The tetranuclear complexes Au4[ArNC(H)NAr]4, Ar = C6H4‐4‐OMe, Ar = C6H4‐4‐Me, and Ar = C6H3‐3,5‐Cl, show three reversible waves at 0.75, 0.95, 1.09 V vs. Ag/AgCl at a scan rate of 500 mV/s in 0.1 M Bu4NPF6/CH2Cl2 at a Pt working electrode in CH2Cl2. Three reversible waves at 0.87, 1.19, 1.42 V vs. Ag/AgCl at a scan rate of 100 mV/s are also observed for the tetranuclear complex Au4[PhNC(Ph)NPh]4 in CH2Cl2. The pentafluorophenyl amidinate derivative, Au4[ArNC(H)NAr]4, Ar = C6F5 shows no oxidation wave below 1.8 V. Recently it has been shown that Au4[ArNC(H)NAr]4 is a very effective catalyst precursor for room temperature CO oxidation.  相似文献   

19.
New Arsinidene-bridged Multinuclear Cluster Complexes of Ag and Au. The Crystal Structures of [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3, PMenPr2, PnPr3), [M4(As4Ph4)2(PR3)4], (M = Ag, PR3 = PEt3, PnPr3; M = Au, PR3 = PnPr3), [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] The reaction of AgCl with PhAs(SiMe3)2 in presence of tertiary phosphines (PR3) leads to arsinidene-bridged silver clusters with the composition [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3 1 , PMenPr2 2 , PnPr3 3 ). Further it is possible to obtain the multinuclear complexes [Ag4(As4Ph4)2(PR3)4], (PR3 = PEt3 4 , PMenPr2 5 ). In analogy to that [PMe3AuCl] reacts with PhAs(SiMe3)2 and PnPr3 to form the compound [Au4(As4Ph4)2(PnPr3)4] 6 , which is isostructurell to 4 and 5 . The gold cluster [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] 7 was obtained from the same solution. The structures were characterized by X-ray single crystal structure analysis. (Crystallographic data see “Inhaltsübersicht”)  相似文献   

20.
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine ( bqmpp ) towards selected CuI, AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4]BF4, compound 1 [Cu2(bqmpp)2](BF4)2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4Cl3(bqmpp)2]BF4 contains a rarely observed Cu4Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6] with the ligand leads to a dinuclear compound ( 3 ) in solution as confirmed by 31P{1H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3 , a tris(quinoline-2-ylmethyl)bisphenyl-phosphine ( tqmbp ) compound [Ag2(tqmbp)2](SbF6)2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2(bqmpp)2]PF6 ( 5 ) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号