首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we achieved a triggering degradation of polymers composed of carbon-carbon (C−C) bonded backbone without relying on introduction of labile heteroatom-based bond. The crucial point for the achievement is using vinyl ether (VE) as a comonomer in radical copolymerization of (meth)acrylate for introduction of the carbon-hydrogen (C−H) bonds active for photocatalyzed hydrogen atom transfer (HAT) as triggers in the pendant. Interestingly, methyl methacrylate (MMA)-n-butyl vinyl ether (NBVE) copolymer underwent degradation in acetonitrile in the presence of benzophenone (Ph2CO) under UV irradiation at 80 °C. The degradation did not take place, when any one of UV, Ph2CO, heat, and NBVE unit was removed or HAT-active solvent such as toluene and 1,4-dioxane was used. These control experiments strongly supported the HAT-triggering degradation. Furthermore, the degradation behaviors of the copolymers with other vinyl ethers such as tert-butyl vinyl ether and methyl isopropenyl ether indicated that the C−H bond neighboring to oxygen on the pendant is mainly responsible for the trigger leading to degradation. The HAT-triggering degradation was also demonstrated even with the acrylate-based copolymer.  相似文献   

2.
A new protocol for amide-directed ortho and lateral C−H sodiation is enabled by sodium hydride (NaH) in the presence of either sodium iodide (NaI) or lithium iodide (LiI). The transient organosodium intermediates could be transformed into functionalized aromatic compounds.  相似文献   

3.
The reaction of Re2(CO)8(μ-C6H5)(μ-H), 1 with corannulene (C20H10) yielded the product Re2(CO)8(μ-H)(μ-η2-1,2-C20H9), 2 (65 % yield) containing a Re2 metalated corannulene ligand formed by loss of benzene from 1 and the activation of one of the CH bonds of the nonplanar corannulene molecule by an oxidative-addition to 1 . The corannulenyl ligand has adopted a bridging η2-σ+π coordination to the Re2(CO)8 grouping. Compound 2 reacts with a second equivalent of 1 to yield three isomeric doubly metalated corannulene products: Re2(CO)8(μ-H)(μ-η2-1,2-μ-η2-10,11-C20H8)Re2(CO)8(μ-H), 3 (35 % yield), Re2(CO)8(μ-H)(μ-η2-2,1-μ-η2-10,11-C20H8)Re2(CO)8(μ-H), 4 (12 % yield), and Re2(CO)8(μ-H)(μ-η2-1,2-μ-η2-11,10-C20H8)Re2(CO)8(μ-H), 5 (12 % yield), by a second CH activation on a second rim double bond on the corannulene molecule. The isomers differ by the relative orientations of the coordinated Re2(CO)8(μ-H) groupings. All new products were characterized structurally by single crystal X-ray diffraction analysis.  相似文献   

4.
Direct C−H bond oxygenation is a strong and useful tool for the construction of oxygen functional groups. After Chen and White's pioneering works, various non-heme-type iron and manganese complexes were introduced, leading to strong development in this area. However, for this method to become a truly useful tool for synthetic organic chemistry, it is necessary to make further efforts to improve site-selectivity, and catalyst durability. Recently, we found that non-heme-type ruthenium complex cis- 1 presents efficient catalysis in C(sp3)−H oxygenation under acidic conditions. cis- 1 -catalysed C−H oxygenation can oxidize various substrates including highly complex natural compounds using hypervalent iodine reagents as a terminal oxidant. Moreover, the catalyst system can use almost stoichiometric water molecules as the oxygen source through reversible hydrolysis of PhI(OCOR)2. It is a strong tool for producing isotopic-oxygen-labelled compounds. Moreover, the environmentally friendly hydrogen peroxide can be used as a terminal oxidant under acidic conditions.  相似文献   

5.
孟祥军 《结构化学》2014,33(5):669-675
In this paper, proton transfer mechanism of alanine induced by Zn2+ was investiga- ted by the CCSD/6-31++G**//B3LYP/6-31++G** method. Six neutral complexes and one ampho- teric complex were optimized, among which the amphoteric complex was the most stable with binding energy of 201.92 kcal·mol-1. In addition, the rotation of intramolecular single bond leads to the neutral configuration conversion, in which the rotation energy barriers of C–C single bonds are lower than 10.51 kcal·mol-1, and those of C–O single bonds range among 9.53~17.50 kcal·mol-1. On the other hand, the proton transfers among the carboxylic oxygen atoms can also result in the neutral configuration conversion, whose energy barriers of forward/back reaction are 53.90 and 32.46 kcal·mol-1, respectively. In detail, the proton transfers from carboxylic group to amino lead to their configuration conversion from neutral to amphoteric. Furthermore, under the catalysis of Zn2+, there was no energy barrier in this reaction. The conversion route from the most stable neutral configuration Ⅱ to the most stable amphoteric configuration I was: Ⅱ→Ⅱ-Ⅲ→Ⅲ→Ⅲ-Ⅵ→Ⅵ→Ⅴ-Ⅵ→Ⅴ→Ⅰ-Ⅴ→Ⅰ,with the energy barrier to be 64.64 kcal·mol-1.  相似文献   

6.
The development of the uranyl cation as a powerful photocatalyst is seriously delayed in comparison with the advances in its fundamental and structural chemistry. However, its characteristic high oxidative capability in the excited state ([UO2]2+* (+2.6 V vs. SHE; SHE=standard hydrogen electrode) combined with blue-light absorption (hv=380 – 500 nm) and a long-lived fluorescence lifetime up to microseconds have reveals that the uranyl cation approaches an ideal photocatalyst for visible-light-driven organic transformations. Described herein is the successful use of uranyl nitrate as a photocatalyst to enable C(sp3)−H activation and C−C bond formation through hydrogen atom transfer (HAT) under blue-light irradiation. In particular, this operationally simple strategy provides an appropriate approach to the synthesis of diverse and valuable diarylmethane motifs. Mechanistic studies and DFT calculations have provided insights into the detailed mechanism of the photoinduced HAT pathway. This research suggests a general platform that could popularize promising uranyl photocatalytic performance.  相似文献   

7.
The Pd-catalyzed directed thiocyanation reaction of arenes and heteroarenes by C−H bond activation was achieved. In the presence of an electrophilic SCN source, this original methodology offered an efficient tool to access a panel of functionalized thiocyanated compounds (21 examples, up to 78 % yield). Post-functionalization reactions further demonstrated the synthetic utility of the approach by converting the SCN-containing molecules into value-added scaffolds.  相似文献   

8.
Photoredox-catalyzed isomerization of γ-carbonyl-substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C−H bond activation. This catalytic redox-neutral process resulted in the synthesis of 1,4-dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ-position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.  相似文献   

9.
Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ ( 1 ), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) ( 2 ). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) ( 4 , TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) ( 8 , oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.  相似文献   

10.
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2[( NON )Al(NDipp)]2 ( NON =4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al−N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al−N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate leads to C−C coupling and C≡O bond cleavage. Thermodynamically, this is driven, at least in part, by Al−O bond formation. Mechanistically, a combination of quantum chemical and experimental observations suggests that the reaction proceeds via exchange of the NR and O substituents through intermediates featuring an aluminium-bound isocyanate fragment.  相似文献   

11.
Organoaluminum reagents’ application in catalytic C−H bond functionalization is limited by competitive side reactions, such as carboalumination and hydroalumination. Herein, rare-earth tetramethylaluminate complexes are shown to catalyze the exclusive C−H bond metalation of terminal alkynes with the commodity reagents trimethyl-, triethyl-, and triisobutylaluminum. Kinetic experiments probing alkyl-group exchange between rare-earth aluminates and trialkylaluminum, C−H bond metalation of alkynes, and catalytic conversions reveal distinct pathways of catalytic aluminations with triethylaluminum versus trimethylaluminum. Most significantly, kinetic data point to reversible formation of a unique [Ln](AlR4)2⋅AlR3 adduct, followed by turnover-limiting alkyne metalation. That is, C−H bond activation occurs from a more associated organometallic species, rather than the expected coordinatively unsaturated species. These mechanistic conclusions allude to a new general strategy for catalytic C−H bond alumination that make use of highly electrophilic metal catalysts.  相似文献   

12.
lotroductionTheairokitalonoforpecCOmPOUnbas~asubeCtoflonghistory-ooinl85l,shahal1]chserVedthaetherScanPhaCeperosidesintheair.AttheboOfthisCentUryClOVdz1andWhs[s]~airoaidationProdUCtSofethrsandinvestipetbedsonIneChainsm.AlthOUghmuCworkhasbodoneedtheautoridationofchrs,thCtaltialokitalonmeChhasIn,Particularlyinwti.c.whacoursethendtialosidationgOesthrough,isnosolvedyeLIn195Os,Evtol'leoUndthamoecularompcaninteraCtwitho~ccompoUndStofOrmcontactchargetIansfer(CopcomPlexandanewCCTalls…  相似文献   

13.
Herein, we report the design and synthesis of a series of novel cationic nitrogen-embedded polyaromatic hydrocarbons with a planar geometry. The synthetic pathway is based on catalytic C−C/C−H bond activation relay that enabled preparation of regioselectively 5,6,10,11-tetrasubstituted naphtho[2,1,8-ija]quinolizinium salts bearing various types of substituents. Single-crystal X-ray analyses of selected compounds confirmed planarity of the quinolizinium core. Most of the prepared compounds exhibited strong fluorescence (Φs up to >99 %) ranging from 420–600 nm depending on the substitution pattern. According to DFT calculations LUMO is always distributed over the quinolizinium framework regardless of the attached substituents, whereas delocalization of HOMO is related to the substitution pattern. Electrochemical measurements show irreversible reduction of all compounds, which is supported by the calculated location of LUMO orbitals.  相似文献   

14.
Transition metal tetrylene complexes offer great opportunities for molecular cooperation due to the ambiphilic character of the group 14 element. Here we focus on the coordination of germylene [(ArMes2)2Ge :] (ArMes=C6H3-2,6-(C6H2-2,4,6-Me3)2) to [RhCl(COD)]2 (COD=1,5-cyclooctadiene), which yields a neutral germyl complex in which the rhodium center exhibits both η6- and η2-coordination to two mesityl rings in an unusual pincer-type structure. Chloride abstraction from this species triggers a singular dehydrogenative double C−H bond activation across the Ge/Rh motif. We have isolated and fully characterized three rhodium-germyl species associated to three C−H cleavage events along this process. The reaction mechanism has been further investigated by computational means, supporting the key cooperative action of rhodium and germanium centers.  相似文献   

15.
A concise, protecting-group-free total synthesis of the unusual brominated sesquiterpene aplydactone is described. Our synthesis features a [2+2] photocycloaddition, a Wolff ring contraction, an unusual remote C−H functionalization to establish the highly strained tetracyclic core, and a hydrogen-atom transfer (HAT) reaction to access the bromine-containing stereocenter. A finely tuned conformation of the α-diazoketone precursor is the key for the success of the late-stage transannular C−H insertion to deliver a bridged six-membered ring and a quaternary stereocenter (C6) between two quaternary carbon atoms (C1 and C7).  相似文献   

16.
In order to better understand the effect of non-covalent weak interactions on molecules, we have explored a variety of weak interactions, such as improper H-bonding (HB), tetrel bonds (TBs) and halogen bonds, in fluorinated chiral zinc complexes. High resolution neutron diffraction studies revealed a methylene carbon-hydrogen bond elongation and shortening due to TB and improper HB interactions, respectively. To show the accumulative effects of multiple weak interactions on the C−H bond, three types of tetrel bonds have been carefully examined. We have also shown how C−H bond elongation can be easily offset by forming an improper HB with the H atom from this C−H bond. Non-covalent interaction and electrostatic potential analysis investigations have been used to affirm the nature of the interactions based on density functional theory (DFT) and other related calculations.  相似文献   

17.
Free carbene readily causes multiple side reactions due to its high energy, thus its asymmetric transformation is very difficult. We present here our findings of high-pKa Brønsted acid catalysts that enable free carbene insertion into N−H bonds of amines to prepare chiral α-amino acid derivatives with high enantioselectivity. Under irradiation with visible light, diazo compounds produce high-energy free carbenes that are captured by amines to form free ylide intermediates, and then the newly designed high-pKa Brønsted acids, chiral spiro phosphamides, promote the proton transfer of ylides to afford the products. Computational and kinetic studies uncover the principle for the rational design of proton-transfer catalysts and explain how the catalysts accelerate this transformation and provide stereocontrol.  相似文献   

18.
The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn+ clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn+ clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C−C bond activation and C−H bond cleavage on the Nbn+ clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb−C bonds and an elongated C−C distance in the HNbn+CH2CH3 motif. Subsequent reactions allow for C−C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.  相似文献   

19.
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper- and palladium-mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel-mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3). The strategy relies on PMe3-promoted oxidative addition and transmetalation, and CCl3CN-induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.  相似文献   

20.
Redox-active N-(fluoromethoxy)benzotriazoles were made accessible from fluoroacetic acid and hydroxybenzotriazoles via electrodecarboxylative coupling. After alkylation, they become effective monofluoromethoxylation reagents, enabling the photocatalytic C−H functionalization of arenes. Thus, irradiation of 1-(OCH2F)-3-Me-6-(CF3)benzotriazolium triflate with blue LED light in the presence of [Ru(bpy)3(PF6)2] promotes the synthesis of diversely functionalized aryl monofluoromethyl ethers. This method allows the late-stage functionalization of biologically relevant structures without relying on ecologically problematic halofluorocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号