首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nanoporous ZnMn2O4 nanorods have been successfully synthesized by calcining β-MnO2/ZIF-8 precursors (ZIF-8 is a type of metal–organic framework). If measured as an anode material for lithium-ion batteries, the ZnMn2O4 nanorods exhibit an initial discharge capacity of 1792 mA h g−1 at 200 mA g−1, and an excellent reversible capacity of 1399.8 mA h g−1 after 150 cycles (78.1 % retention of the initial discharge capacity). Even at 1000 mA g−1, the reversible capacity is still as high as 998.7 mA h g−1 after 300 cycles. The remarkable lithium-storage performance is attributed to the one-dimensional nanoporous structure. The nanoporous architecture not only allows more lithium ions to be stored, which provides additional interfacial lithium-storage capacity, but also buffers the volume changes, to a certain degree, during the Li+ insertion/extraction process. The results demonstrate that nanoporous ZnMn2O4 nanorods with superior lithium-storage performance have the potential to be candidates for commercial anode materials in lithium-ion batteries.  相似文献   

2.
Nitrogen-linked hexaazatrinaphthylene polymer ( N2-HATN ) as organic cathode material with low HOMO–LOMO gap was synthesized and was observed to possess reversible high capacity and unexpected long-term cycling stability. The pre-treated N2-HATN and pRGO combination demonstrated good structure compatibility and the resultant cathode exhibited a constant increment of capacity during the redox cycles. The initial capacity at 0.05 A g−1 was 406 mA h−1 g−1, and increased to 630 mA h−1 g−1 after 70 cycles. At 0.5 A g−1 discharging rate, the capacity increased from an initial value of 186 mA h−1 g−1 to 588 mA h−1 g−1 after 1600 cycles. The pseudocapacitance-type behavior is postulated to be attributed to the structure compatibility between the active material and pRGO.  相似文献   

3.
Nanostructured tin dioxide (SnO2) has emerged as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity (1494 mA h g−1) and excellent stability. Unfortunately, the rapid capacity fading and poor electrical conductivity of bulk SnO2 material restrict its practical application. Here, SnO2 nanospheres/reduced graphene oxide nanosheets (SRG) are fabricated through in-situ growth of carbon-coated SnO2 using template-based approach. The nanosheet structure with the external layer of about several nanometers thickness can not only accommodate the volume change of Sn lattice during cycling but also enhance the electrical conductivity effectively. Benefited from such design, the SRG composites could deliver an initial discharge capacity of 1212.3 mA h g−1 at 0.1 A g−1, outstanding cycling performance of 1335.6 mA h g−1 after 500 cycles at 1 A g−1, and superior rate capability of 502.1 mA h g−1 at 5 A g−1 after 10 cycles. Finally, it is believed that this method could provide a versatile and effective process to prepare other metal-oxide/reduced graphene oxide (rGO) 2D nanocomposites.  相似文献   

4.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   

5.
Metal oxalate has become a most promising candidate as an anode material for lithium-ion and sodium-ion batteries. However, capacity decrease owing to the volume expansion of the active material during cycling is a problem. Herein, a rod-like CoC2O4⋅2 H2O/rGO hybrid is fabricated through a novel multistep solvo/hydrothermal strategy. The structural characteristics of the CoC2O4⋅2 H2O microrod wrapped using rGO sheets not only inhibit the volume variation of the hybrid electrode during cycling, but also accelerate the transfer of electrons and ions in the 3 D graphene network, thereby improving the electrochemical properties of CoC2O4⋅2 H2O. The CoC2O4⋅2 H2O/rGO electrode delivers a specific capacity of 1011.5 mA h g−1 at 0.2 A g−1 after 200 cycles for lithium storage, and a high capacity of 221.1 mA h g−1 at 0.2 A g−1 after 100 cycles for sodium storage. Moreover, the full cell CoC2O4⋅2 H2O/rGO//LiCoO2 consisting of the CoC2O4⋅2 H2O/rGO anode and LiCoO2 cathode maintains 138.1 mA h g−1 after 200 cycles at 0.2 A g−1 and has superior long-cycle stability. In addition, in situ Raman spectroscopy and in situ and ex situ X-ray diffraction techniques provide a unique opportunity to understand fully the reaction mechanism of CoC2O4⋅2 H2O/rGO. This work also gives a new perspective and solid research basis for the application of metal oxalate materials in high-performance lithium-ion and sodium-ion batteries.  相似文献   

6.
Si/SiOC composites are promising high-capacity anode materials for lithium-ion batteries since the SiOC matrix can effectively buffer the volumetric change of Si during cycling. However, a structure of Si nanoparticles (NPs) enwrapped by a continuous SiOC phase typically shows poor cyclic stability and low charge/discharge rate due to structure failure of bulk SiOC shells derived from carbon-rich organosilicon. To address this issue, in this work, an Si/SiOC nanocomposite with volume-change-buffering microstructure, in which Si NPs are uniformly dispersed in a matrix of SiOC nanospheres, has been synthesized. Our results show that the space between Si and SiOC NPs can accommodate the large volume change of Si during cycling and facilitate infiltration of the electrolyte. The nanostructured SiOC skeleton serves as both a mechanically robust buffer to alleviate the intrinsic expansion of Si and an effective electron conductor. The Si/SiOC NP composite displays significantly increased capacity and cyclic stability compared with pure SiOC, and delivers reversible capacities of around 800 mA h−1 g−1 at a current density of 100 mA g−1 (approximately 100 % capacity retention after 100 cycles) and around 600 mA h−1 g−1 at 500 mA g−1 (capacity retention about 80 % after 500 cycles).  相似文献   

7.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   

8.
To overcome the drawbacks of the structural instability and poor conductivity of SnO2-based anode materials, a hollow core–shell-structured SnO2@C@Co-NC (NC=N-doped carbon) composite was designed and synthesized by employing the heteroatom-doping and multiconfinement strategies. This composite material showed a much-reduced resistance to charge transfer and excellent cycling performance compared to the bare SnO2 nanoparticles and SnO2@C composites. The doped heteroatoms and heterostructure boost the charge transfer, and the porous structure shortens the Li-ion diffusion pathway. Also, the volume expansion of SnO2 NPs is accommodated by the hollow space and restricted by the multishell heteroatom-doped carbon framework. As a result, this structured anode material delivered a high initial capacity of 1559.1 mA h g−1 at 50 mA g−1 and an initial charge capacity of 627.2 mA h g−1 at 500 mA g−1. Moreover, the discharge capacity could be maintained at 410.8 mA h g−1 after 500 cycles with an attenuation rate of only 0.069 % per cycle. This multiconfined SnO2@C@Co-NC structure with superior energy density and durable lifespan is highly promising for the next-generation lithium-ion batteries.  相似文献   

9.
Transition metal oxides have vastly limited practical application as electrode materials for lithium-ion batteries (LIBs) due to their rapid capacity decay. Here, a versatile strategy to mitigate the volume expansion and low conductivity of Fe3O4 by coating a thin carbon layer on the surface of Fe3O4 nanosheets (NSs) was employed. Owing to the 2D core–shell structure, the Fe3O4@C NSs exhibit significantly improved rate performance and cycle capability compared with bare Fe3O4 NSs. After 200 cycles, the discharge capacity at 0.5 A g−1 was 963 mA h g−1 (93 % retained). Moreover, the reaction mechanism of lithium storage was studied in detail by ex situ XRD and HRTEM. When coupled with a commercial LiFePO4 cathode, the resulting full cell retains a capacity of 133 mA h g−1 after 100 cycles at 0.1 A g−1, which demonstrates its superior energy storage performance. This work provides guidance for constructing 2D metal oxide/carbon composites with high performance and low cost for the field of energy storage.  相似文献   

10.
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter‘s agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h−1 even tested at 10 A g−1), cycling stability (stable reversible capacity of 547 mA h g−1 after 200 cycles at 1 A g−1) and applicability (a high reversible capacity of 101 mA h g−1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability.  相似文献   

11.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure‐directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one‐pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium‐ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g?1 after 80 cycles at a current density of 200 mA g?1, and maintain a reversible capacity of 690 mA h g?1 after 200 cycles at a current density of 2000 mA g?1. The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.  相似文献   

12.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   

13.
Nanostructured silicon-based materials with porous structures have recently been found to be impressive anode materials with high capacity and cycling performance for lithium-ion batteries. However, the current methods of preparing porous silicon have generally been confronted with the requirement for multiple steps and complex synthesis. In the present study, porous silicon with high surface area was prepared by using a high yielding and simple reaction in which commercial magnesium powder readily reacts with HSiCl3 with the help of an amine catalyst under mild conditions. The obtained porous silicon was coated with a nitrogen-doped carbon layer and used as the anode for lithium-ion batteries. The porous Si-carbon nanocomposites exhibited excellent cycling performance with a retained discharge capacity of 1300 mA h g−1 after 200 cycles at 1 A g−1 and a discharge capacity of 750 mA h g−1 at a current density of 2 A g−1 after 250 cycles. Remarkably, the Coulombic efficiency was maintained at nearly 100 % throughout the measurements.  相似文献   

14.
An amidation-dominated re-assembly strategy is developed to prepare uniform single atom Ni/S/C nanotubes. In this re-assembly process, a single-atom design and nano-structured engineering are realized simultaneously. Both the NiO5 single-atom active centers and nanotube framework endow the Ni/S/C ternary composite with accelerated reaction kinetics for potassium-ion storage. Theoretical calculations and electrochemical studies prove that the atomically dispersed Ni could enhance the convention kinetics and decrease the decomposition energy barrier of the chemically-absorbed small-molecule sulfur in Ni/S/C nanotubes, thus lowering the electrode reaction overpotential and resistance remarkably. The mechanically stable nanotube framework could well accommodate the volume variation during potassiation/depotassiation process. As a result, a high K-storage capacity of 608 mAh g−1 at 100 mA g−1 and stable cycling capacity of 330.6 mAh g−1 at 1000 mA g−1 after 500 cycles are achieved.  相似文献   

15.
To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2O3 nanowires on graphene ribbons (Fe2O3/GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2O3/GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2O3/GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g−1 at 5 A g−1, and 471 mAh g−1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm−2), the Fe2O3/GR can still deliver higher reversible capacity (223 mAh g−1 even at 2 A g−1) compared with the Fe2O3/GS (37 mAh g−1) for LIBs.  相似文献   

16.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

17.
Sodium- and potassium-ion batteries have attracted intensive attention recently as low-cost alternatives to lithium-ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high-rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether-based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.  相似文献   

18.
Owing to the high specific capacity and energy density, metal oxides have become very promising electrodes for lithium‐ion batteries (LIBs). However, poor electrical conductivity accompanied with inferior cycling stability resulting from large volume changes are the main obstacles to achieve a high reversible capacity and stable cyclability. Herein, a facile and general approach to fabricate SnO2, Fe2O3 and Fe2O3/SnO2 fibers is proposed. The appealing structural features are favorable for offering a shortened lithium‐ion diffusion length, easy access for the electrolyte and reduced volume variation when used as anodes in LIBs. As a consequence, both single and hybrid oxides show satisfactory reversible capacities (1206 mAh g?1 for Fe2O3 and 1481 mAh g?1 for Fe2O3/SnO2 after 200 cycles at 200 mA g?1) and long lifespans.  相似文献   

19.
Transition-metal phosphides have been regarded as promising anode materials for high-energy lithium-ion batteries (LIBs) due to their high capacity and low cost. However, the mechanical pulverization and resultant capacity fade critically limit their further development. Here, we have designed an innovative core-shell CoP@NC@TiO2 composite with an exotic rhombic dodecahedral morphology derived from ZIF-67 precursor, which combines both advantages from TiO2 with excellent cycling stability and CoP with high capacity. The additional MOF-derived N-doped carbon framework is considered to improve the electrical conductivity and accommodate the volume expansion of CoP particles. Moreover, the outer TiO2 shell can also buffer the mechanical stress and maintain the integrity of composite. With the unique structure, the core-shell CoP@NC@TiO2 composite material exhibits excellent electrochemical performance with a considerable discharge specific capacity of 706.3 mAh g−1 at a current density of 100 mA g−1 after 200 cycles and outstanding rate capacity. Hence, our work demonstrates that this core-shell structure strategy combined with MOF-derived carbon framework could provide a practical pathway towards enhanced electrode materials for energy storage and conversion.  相似文献   

20.
Tin diselenide (SnSe2), as an anode material, has outstanding potential for use in advanced lithium-ion batteries. However, like other tin-based anodes, SnSe2 suffers from poor cycle life and low rate capability due to large volume expansion during the repeated Li+ insertion/de-insertion process. This work reports an effective and easy strategy to combine SnSe2 and carbon nanotubes (CNTs) to form a SnSe2/CNTs hybrid nanostructure. The synthesized SnSe2 has a regular hexagonal shape with a typical 2D nanostructure and the carbon nanotubes combine well with the SnSe2 nanosheets. The hybrid nanostructure can significantly reduce the serious damage to electrodes that occurs during electrochemical cycling processes. Remarkably, the SnSe2/CNTs electrode exhibits a high reversible specific capacity of 457.6 mA h g−1 at 0.1 C and 210.3 mA h g−1 after 100 cycles. At a cycling rate of 0.5 C, the SnSe2/CNTs electrode can still achieve a high value of 176.5 mA h g−1, whereas a value of 45.8 mA h g−1 is achieved for the pure SnSe2 electrode. The enhanced electrochemical performance of the SnSe2/CNTs electrode demonstrates its great potential for use in lithium-ion batteries. Thus, this work reports a facile approach to the synthesis of SnSe2/CNTs as a promising anode material for lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号