首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discovery of species with adaptive aromaticity (being aromatic in both the lowest singlet and triplet states) is particularly challenging as cyclic species are generally aromatic either in the ground state or in the excited state only, according to Hückel's and Baird's rules. Inspired by the recent realization of cyclo[18]carbon, here we demonstrate that cyclo[10]carbon possesses adaptive aromaticity by screening cyclo[n]carbon (n=8?24), which is supported by nucleus‐independent chemical shift (NICS), anisotropy of the current‐induced density (ACID), π contribution of electron localization function (ELFπ) and electron density of delocalized bonds (EDDB) analyses. Further study reveals that the lowest triplet state of cyclo[10]carbon is formed by in‐plane ππ* excitation. Thus, the major contribution to the aromaticity from out‐of‐plane π molecular orbitals does not change significantly in the lowest singlet state. Our findings highlight a crucial role of out‐of‐plane π orbitals in maintaining aromaticity for both the lowest singlet and triplet states as well as the aromaticity dependence on the number of the carbon in cyclo[n]carbon.  相似文献   

2.
Dibenzo[a,e]pentalene (DBP) is a non-alternant conjugated hydrocarbon with antiaromatic character and ambipolar electrochemical behavior. Upon both reduction and oxidation, it becomes aromatic. We herein study the chemical oxidation and reduction of a planar DBP derivative and a bent DBP-phane. The molecular structures of its planar dication, cation radical and anion radical in the solid state demonstrate the gained aromaticity through bond length equalization, which is supported by nucleus independent chemical shift-calculations. EPR spectra on the cation radical confirm the spin delocalization over the DBP framework. A similar delocalization was not possible in the reduced bent DBP-phane, which stabilized itself by proton abstraction from a solvent molecule upon reduction. This is the first report on structures of a DBP cation radical and dication in the solid state and of a reduced bent DBP derivative. Our study provides valuable insight into the charged species of DBP for its application as semiconductor.  相似文献   

3.
A new sigma-pi diradical, B4(CO)2, prepared in matrix isolation, was characterized unambiguously by isotopic-substitution infrared spectroscopy and by theoretical computations. Both open-shell singlet and triplet states have three pi electrons but are aromatic with moderately large NICS values. Quantum chemical calculations at various levels indicate that the open-shell singlet is slightly more stable than the triplet state. However, the singlet and triplet are computed to have very similar IR features which do not allow experimental differentiation.  相似文献   

4.
Due to the reversal in electron counts for aromaticity and antiaromaticity in the closed‐shell singlet state (normally ground state, S0) and lowest ππ* triplet state (T1 or T0), as given by Hückel's and Baird's rules, respectively, fulvenes are influenced by their substituents in the opposite manner in the T1 and S0 states. This effect is caused by a reversal in the dipole moment when going from S0 to T1 as fulvenes adapt to the difference in electron counts for aromaticity in various states; they are aromatic chameleons. Thus, a substituent pattern that enhances (reduces) fulvene aromaticity in S0 reduces (enhances) aromaticity in T1, allowing for rationalizations of the triplet state energies (ET) of substituted fulvenes. Through quantum chemical calculations, we now assess which substituents and which positions on the pentafulvene core are the most powerful for designing compounds with low or inverted ET. As a means to increase the π‐electron withdrawing capacity of cyano groups, we found that protonation at the cyano N atoms of 6,6‐dicyanopentafulvenes can be a route to on‐demand formation of a fulvenium dication with a triplet ground state (T0). The five‐membered ring of this species is markedly Baird‐aromatic, although less than the cyclopentadienyl cation known to have a Baird‐aromatic T0 state.  相似文献   

5.
Cyclopenta ring fused bisanthene and its charged species were synthesized. The neutral compound has an open‐shell singlet ground state and displays global anti‐aromaticity. The dication also exhibits singlet diradical character but has a unique [10]annulene‐within‐[18]annulene global aromatic structure. The dianion is closed‐shell singlet in the ground state and shows global aromaticity with 22 π electrons delocalized on the periphery. These findings prrovide new insight into the design and properties of global aromatic/anti‐aromatic systems based on π‐conjugated polycyclic hydrocarbons.  相似文献   

6.
The singlet ground states and lowest triplet states of penta- and heptafulvene, their benzannulated derivatives, as well as the lowest quintet states of pentaheptafulvalenes, either the parent compound or compounds in which the two rings are intercepted by either an alkynyl or a phenyl segment, were investigated at the (U)OLYP/6-311G(d,p) density functional theory level. The influence of (anti)aromaticity was analyzed by the structure-based aromaticity index HOMA, the harmonic oscillator model of aromaticity. The extent of (anti)aromatic character was also evaluated in terms of the π-electron (de)localization as measured by the π component of the electron localization function (ELF(π)). The natural atomic orbital (NAO) occupancies were calculated in order to evaluate the degree of π-electron shift caused by the opposing electron-counting rules for aromaticity in the electronic ground state (S(0); Hückel's rule) and the first ππ* excited triplet state (T(1); Baird's rule). Pentaheptafulvalene (5) shows a shift of 0.5 π electrons from the 5-ring to the 7-ring when going from the S(0) state to the lowest quintet state (Qu(1)). The pentaheptafulvalene 5 and [5.6.7]quinarene 7 were also investigated in their 90° twisted conformations. From our study it is apparent that excitation localization in fulvalenes, but not in fulvenes, to a substantial degree is determined by aromaticity localization to triplet biradical 4n π-electron cycles. Isolated benzene rings in these compounds tend to remain as closed-shell 6π-electron cycles.  相似文献   

7.
Expanded porphyrins with appropriate metalation provide an excellent opportunity to study excited‐state aromaticity. The coordinated metal allows the excited‐state aromaticity in the triplet state to be detected through the heavy‐atom effect, but other metalation effects on the excited‐state aromaticity were ambiguous. Herein, the excited‐state aromaticity of gold(III) hexaphyrins through the relaxation dynamics was revealed via electronic and vibrational spectroscopy. The SQ states of gold [26]‐ and [28]‐hexaphyrins showed interconvertible absorption and IR spectra with those of counterparts in the ground‐state, indicating aromaticity reversal. Furthermore, while the T1 states of gold [28]‐hexaphyrins also exhibited reversed aromaticity according to Baird's rule, the ligand‐to‐metal charge‐transfer state of gold [26]‐hexaphyrins contributed by the gold metal showed non‐aromatic features arising from the odd‐number of π‐electrons.  相似文献   

8.
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included.  相似文献   

9.
Helicenes and extended helical π-conjugated compounds have been widely studied, but most of the systems contain only aromatic benzene or heterocyclic rings, showing local aromatic character. Herein, new S-shaped double [6]helicene 1 , which has two embedded para-quinodimethane (p-QDM) units, is reported. Due to the existence of a proaromatic quinoidal substructure, it has open-shell diradical character. Its model compound, C-shaped single [6]helicene 2 containing one p-QDM unit, was also synthesized and compared. Their ground-state structures and electronic properties were systematically studied by a combination of various experimental methods assisted by theoretical calculations. Compound 1 has a double-helical structure in the crystal, with the two terminal [6]helicene units bent in opposite directions (i.e., anti form). However, an anti/syn isomerization process with a moderate interconversion energy barrier was observed on the NMR timescale. Compound 1 shows amphoteric redox behavior. It also exhibits open-shell diradical character (y0=12.1 %) and a small singlet–triplet gap. On the other hand, compound 2 has a typical closed-shell nature. The dication and dianion of 1 also show open-shell diradical character. The dianion of 2 and the tetraanion of 1 exhibit similar electronic structures to their respective isoelectronic structures, that is, [6]helicene and a double [6]helicene. This work provides some insights into the design and synthesis of stable helical π systems with open-shell diradical character and magnetic activity.  相似文献   

10.
Dibenzo[b,f]arsepins possessing severely distorted cores compared to those of other heteropins were synthesized. These derivatives exhibited dual photoluminescence in the green‐to‐red region (500–700 nm) and the near‐ultraviolet region (<380 nm), which could be attributed to the planarization of the arsepin core in the lowest singlet excited (S1) state. The computational approach for the assessment of the aromatic indices revealed that the dibenzoarsepins studied show aromaticity (8π system) in the S1 states in line with Baird's rule. The lone pair electrons of the arsenic atoms play a crucial role in the aromaticity in the S1 states.  相似文献   

11.
裴晓琴  武海顺  张晓清  许兴友 《化学学报》2007,65(14):1357-1362
运用G03W程序, 在高精度理论水平(B3P86/6-311+G**)下, 对母体转烯(Hypostrophene)及其BCO衍生物的单态、三态、开壳层单态的Cope重排体系进行了理论研究: 对体系进行了相应的结构优化和频率计算, 并进一步计算了体系的重排势垒、反应能量、核独立化学位移值等理论参数. 文中首次提出具有四同芳香性的实例: 转烯的Cope重排过渡态. 计算同时表明BCO取代CH的行为使得进行Cope重排的反应物和过渡态的离域性、芳香性以及稳定性都得到很大的促进, 这可以从前线轨道的成键以及延伸方面得到合理的解释. 所得结果进一步验证了BCO基团的稳定性效应.  相似文献   

12.
Paul S  Misra A 《Inorganic chemistry》2011,50(8):3234-3246
All-metal aromatic molecules are the latest inclusion in the family of aromatic systems. Two different classes of all-metal aromatic clusters are primarily identified: one is aromatic only in the low spin state, and the other shows aromaticity even in high-spin situations. This observation prompts us to investigate the effect of spin multiplicity on aromaticity, taking Al(4)(2-), Te(2)As(2)(2-), and their copper complexes as reference systems. Among these clusters, it has been found that the molecules that are aromatic only in their singlet state manifest antiaromaticity in their triplet state. The aromaticity in the singlet state is characterized by the diatropic ring current circulated through the bonds, which are cleaved to generate excess spin density on the atoms in the antiaromatic triplet state. Hence, in such systems, an antagonistic relationship between aromaticity and high-spin situations emerges. On the other hand, in the case of triplet aromatic molecules, the magnetic orbitals and the orbitals maintaining aromaticity are different; hence, aromaticity is not depleted in the high-spin state. The nonlinear optical (NLO) behavior of the same set of clusters in different spin states has also been addressed. We correlate the second hyperpolarizability and spin density in order to judge the effect of spin multiplicity on third-order NLO response. This correlation reveals a high degree of NLO behavior in systems with excess spin density. The variance of aromaticity and NLO response with spin multiplicity is found to stem from a single aspect, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and eventually the interplay among aromaticity, magnetism, and NLO response in such materials is established. Hence, the HOMO-LUMO energy gap becomes the cornerstone for tuning the interplay. This correlation among the said properties is not system-specific and thus can be envisaged even beyond the periphery of all-metal aromatic clusters. Such interplay is of crucial importance in tailoring novel paradigm of multifunctional materials.  相似文献   

13.
The singlet open-shell character and antiaromaticity are intriguing features in π-conjugated carbocycles. These two exhibit similar chemical and physical properties. However, they rarely coexist in the same molecule. Understanding the interrelation between the open-shell and antiaromatic characteristics in the same molecule is crucial to control the electronic properties. Herein we describe the synthesis and characterization of a new member of diareno[a,f]pentalene, benzo[a]naphtho[2,3-f]pentalene 6 . Unlike its isomer 5 with a closed-shell ground state, 6 exhibits an appreciable open-shell character and a moderate antiaromatic feature. The behaviors of the open-shell index (y0) against the difference of the proton chemical signal (Δδ(H1)) between pentalenide dianions/neutral pentalenes for our reported pentalenes 1 , 4 , 5 , and 6 give a thought-provoking conclusion about the interrelation between open-shell and antiaromatic characteristics in this series. The mode of the incorporated quinoidal moiety and the formal molecular symmetry are critical to balance these two characteristics.  相似文献   

14.
meso‐Hexakis(pentafluorophenyl)‐substituted neutral hexaphyrin with a 26π‐electronic circuit can be regarded as a real homolog of porphyrin with an 18π‐electronic circuit with respect to a quite flat molecular structure and strong aromaticity. We have investigated additional aromaticity enhancement of meso‐hexakis(pentafluorophenyl)[26]hexaphyrin(1.1.1.1.1.1) by deprotonation of the inner N? H groups in the macrocyclic molecular cavity to try to induce further structural planarization. Deprotonated mono‐ and dianions of [26]hexaphyrin display sharp B‐like bands, remarkably strong fluorescence, and long‐lived singlet and triplet excited‐states, which indicate enhanced aromaticity. Structural, spectroscopic, and computational studies have revealed that deprotonation induces structural deformations, which lead to a change in the main conjugated π‐electronic circuit and cause enhanced aromaticity.  相似文献   

15.
The reaction of the ground and excited states of lumichrome (=7,8‐dimethylalloxazine=7,8‐dimethylbenzo[g]pteridine‐2,4(1H,3H)‐dione) with aliphatic and aromatic amines was investigated in MeOH. In the presence of aliphatic amines of high basicity, new bands are observed in the absorption and fluorescence spectra. These bands arise in a proton‐transfer reaction from lumichrome, in the ground and in the singlet excited states, to the amine. On the other hand, amines with lower basicity such as triethanolamine (=2,2′,2″‐nitrilotris[ethanol]) and aromatic amines are not able to deprotonate lumichrome, and hence a quenching of the fluorescent emission takes place without changes in the spectral shape. In this case, bimolecular‐quenching rate constants were determined for the excited singlet and triplet states. Based on laser‐flash‐photolysis experiments, an electron‐transfer mechanism is proposed. Aliphatic amines yield lower rate constants than the aromatic ones for the same driving force. A notable difference arises in the limiting value reached by the singlet and triplet quenching rate constants by aromatic amines. For the singlet quenching, the limit is coincident with a diffusion‐controlled reaction, while those for triplet quenching reach a lower constant value, independent of the driving force. This is explained by an electron‐transfer mechanism, with a lower frequency factor for the triplet‐state process.  相似文献   

16.
17.
The aromaticity and antiaromaticity of the ground state (S 0), lowest triplet state (T 1), and first singlet excited state (S 1) of benzene, and the ground states (S 0), lowest triplet states (T 1), and the first and second singlet excited states (S 1 and S 2) of square and rectangular cyclobutadiene are assessed using various magnetic criteria including nucleus-independent chemical shifts (NICS), proton shieldings, and magnetic susceptibilities calculated using complete-active-space self-consistent field (CASSCF) wave functions constructed from gauge-including atomic orbitals (GIAOs). These magnetic criteria strongly suggest that, in contrast to the well-known aromaticity of the S 0 state of benzene, the T 1 and S 1 states of this molecule are antiaromatic. In square cyclobutadiene, which is shown to be considerably more antiaromatic than rectangular cyclobutadiene, the magnetic properties of the T 1 and S 1 states allow these to be classified as aromatic. According to the computed magnetic criteria, the T 1 state of rectangular cyclobutadiene is still aromatic, but the S 1 state is antiaromatic, just as the S 2 state of square cyclobutadiene; the S 2 state of rectangular cyclobutadiene is nonaromatic. The results demonstrate that the well-known "triplet aromaticity" of cyclic conjugated hydrocarbons represents a particular case of a broader concept of excited-state aromaticity and antiaromaticity. It is shown that while electronic excitation may lead to increased nuclear shieldings in certain low-lying electronic states, in general its main effect can be expected to be nuclear deshielding, which can be substantial for heavier nuclei.  相似文献   

18.
In connection with the reinterpretation of Hund's multiplicity rules for molecules, a detailed study has been made of the energy differences in the total energy and its components for the triplet and singlet Πu states of the hydrogen molecule and the analogous states of the four- and six-membered hydrogen atom rings. For the hydrogen molecule, both SCF and CI studies indicated that the outer electron is considerably more contracted in the triplet than in the singlet state. In both approximations, the energy difference is dominated for all bond distances of chemical and physical significance by the electron-nuclear attraction component and not by the electron repulsion component as predicted by simple first-order perturbation theory. Although the correlation energy for each of the states is of the same magnitude as the energy differences considered here, the difference of the correlation energies is much smaller. It had little effect on the qualitative differences between these states of the hydrogen molecule. For the four- and six-membered rings, SCF studies were made on the lowest singlet and triplet states where one electron was promoted from the σg to a Πu orbital. Even though the coupled electrons were more delocalized in these cases, the electron repulsion became relatively more important. However in all cases, the lower state had the highest electron repulsion energy and lower electron-nuclear attraction. The triplet state continued to have the more contracted outer open-shell orbital.  相似文献   

19.
We have investigated the aromaticity of singly twisted Möbius aromatic and doubly twisted Hückel antiaromatic bis(palladium(II)) [36]octaphyrins in the lowest triplet state (T1) by spectroscopic measurements and quantum calculations. The T1 state of the singly twisted Möbius [36]octaphyrin shows broad and weak absorption spectral features that are analogous to those of antiaromatic expanded porphyrins while the T1 state of the doubly twisted Hückel [36]octaphyrin exhibits intense and distinct spectral features, indicating the aromatic nature. These results along with theoretical calculations support the hypothesis that the aromaticity is reversed in the T1 state. Furthermore, we show that the degree of structural smoothness affects the aromaticity reversal in the T1 state.  相似文献   

20.
Expanded porphyrins with appropriate metalation provide an excellent opportunity to study excited-state aromaticity. The coordinated metal allows the excited-state aromaticity in the triplet state to be detected through the heavy-atom effect, but other metalation effects on the excited-state aromaticity were ambiguous. Herein, the excited-state aromaticity of gold(III) hexaphyrins through the relaxation dynamics was revealed via electronic and vibrational spectroscopy. The SQ states of gold [26]- and [28]-hexaphyrins showed interconvertible absorption and IR spectra with those of counterparts in the ground-state, indicating aromaticity reversal. Furthermore, while the T1 states of gold [28]-hexaphyrins also exhibited reversed aromaticity according to Baird's rule, the ligand-to-metal charge-transfer state of gold [26]-hexaphyrins contributed by the gold metal showed non-aromatic features arising from the odd-number of π-electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号