首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

2.
《中国化学》2017,35(8):1289-1293
We have successfully designed and synthesized a new tetracarboxylic linker, which constructed its first three‐dimensional microporous metal‐organic framework (MOF ), [Cu2(DDPD )(H2O )2]•Gx ( ZJU ‐13 , H4DDPD =5,5'‐(2,6‐dihydroxynaphthalene‐1,5‐diyl)diisophthalic acid, ZJU =Zhejiang University, G = guest molecules) via solvothermal reaction. Due to open Cu2+ sites and optimized pore size, the activated ZJU ‐13a displays high separation selectivity for C2H2 /CH4 of 74 and C2H2 /CO2 of 12.5 at low pressure by using Ideal Adsorbed Solution Theory (IAST ) simulation at room temperature.  相似文献   

3.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   

4.
Self‐assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod‐packing 3D microporous hydrogen‐bonded organic framework (HOF‐3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.  相似文献   

5.
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO2 affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO2 are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO2 uptake capacity and CO2/N2, CO2/CH4 separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.  相似文献   

6.
7.
A dual temperature- and light-responsive C2H2/C2H4 separation switch in a diarylethene metal–organic framework (MOF) is presented. At 195 K and 100 kPa this MOF shows ultrahigh C2H2/C2H4 selectivity of 47.1, which is almost 21.4 times larger than the corresponding value of 2.2 at 293 K and 100 kPa, or 15.7 times larger than the value of 3.0 for the material under UV at 195 K and 100 kPa. The origin of this unique control in C2H2/C2H4 selectivity, as unveiled by density functional calculations, is due to a guest discriminatory gate-opening effect from the diarylethene unit.  相似文献   

8.
An anionic multifunctional porous metal organic framework (MOF), [Cu2THBA(H2O)2] · (C3H7NO)12 · (H2O)10 ( 1 ) (H4THBA = p‐terphenyl‐3,2′′,3′′,5,5′′,5′′′‐ hexcarboxylic acid) with NbO‐type topology was synthesized and characterized. Due to multiple functional sites and suitable pore size, the desolvated compound 1a exhibits high separation selectivity for C2H2/CO2 of 30 and C2H2/CH4 of 131 at 1 kPa at room temperature. Compound 1 can also efficiently and completely separate methylene blue (MB+) molecules of low concentrations from aqueous solution in 12 h.  相似文献   

9.
In this paper we used MOF-5 and Cu3(BTC)2 to separate CO2/CH4 and CH4/N2 mixtures under dynamic conditions. Both materials were synthesized and pelletized, thus allowing for a meaningful characterization in view of process scale-up. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). By performing breakthrough experiments, we found that Cu3(BTC)2 separated CO2/CH4 slightly better than MOF-5. Because the crystal structure of Cu3(BTC)2 includes unsaturated accessible metal sites formed via dehydration, it predominantly interacted with CO2 molecules and more easily captured them. Conversely, MOF-5 with a suitable pore size separated CH4/N2 more efficiently in our breakthrough test.  相似文献   

10.
李艳强  贲腾  裘式纶 《化学学报》2015,73(6):605-610
通过简单的一步碳化方法, 以含氮的多孔有机骨架JUC-Z2为碳前驱物制备出氮掺杂多孔碳材料. 与原始JUC-Z2材料相比, 制备的多孔碳材料显示出明显提高的气体吸附量和增强的吸附焓. 其中JUC-Z2-900的CO2吸附量高达113 cm3·g-1, H2吸附量也达到246 cm3·g-1, 超过了大部分报道的多孔材料. 尤其是JUC-Z2-900的CH4吸附量在273 K, 1 bar下高达60 cm3·g-1, 据我们所知, 这一值为目前报道材料的最高值. 除此之外, 样品还显示出选择性吸附CO2的能力, 273 K下, JUC-Z2-900的CO2/N2的选择性高达10, CO2/H2的选择性也高达66. 另外, 样品具有很高的热稳定性, 有望应用在碳捕获和清洁能源储存等领域.  相似文献   

11.
Two novel imide/imine-based organic cages have been prepared and studied as materials for the selective separation of CO2 from N2 and CH4 under vacuum swing adsorption conditions. Gas adsorption on the new compounds showed selectivity for CO2 over N2 and CH4. The cages were also tested as fillers in mixed-matrix membranes for gas separation. Dense and robust membranes were obtained by loading the cages in either Matrimid® or PEEK-WC polymers. Improved gas-transport properties and selectivity for CO2 were achieved compared to the neat polymer membranes.  相似文献   

12.
有机物对水体的污染严重威胁生态环境安全和人类健康。 如何有效控制和消除水体系中的有机污染物是当前全球性热点问题之一,基于多孔材料的高效吸附是处理水体有机污染的有效方法。 多孔有机聚合物(Porous Organic Polymers,POPs)具有比表面积高、物理化学稳定性好、易修饰等特点,作为新型吸附剂在处理水体系有机污染方面具有广阔的应用前景。 本文综述了近10年来新型多孔有机聚合物对水体系中有机溶剂、农药与杀虫剂、有机染料等污染物的吸附分离研究进展。  相似文献   

13.
The function of allosteric enzymes can be activated or inhibited through binding of specific effector molecules. Herein, we describe how the skeletal deformation, pore configuration, and ultimately adsorptive behavior of a dynamic metal–organic framework (MOF), (Me2NH2)[In(atp)]2 (in which atp=2‐aminoterephthalate), are controlled by the allocation and orientation of its counter ions triggered by the inclusion/removal of different guest molecules. The power of such allosteric control in MOFs is highlighted through the optimization of the hydrocarbon separation performance by achieving multiple pore configurations but without altering the chemical composition.  相似文献   

14.
15.
A novel porous aromatic framework, PAF-52, was obtained via the polymerization of tetrahedral mono- mer tetrakis(4-cyanodiphenyl) methane(TCDPM) with the aid of a facile ionothermal method. PAF-52 has a surface area of 1159 m2/g(BET), and shows a considerable high separation ability of CO2 in N2 or CH4 respectively at room temperature, using gas-chromatography experiments as evidence,  相似文献   

16.
An azo-functionalized porous organic framework (denoted as JJU-1) was synthesized via FeCl3-promoted oxidative coupling polymerization. By virtue of a porous skeleton and a light/heat responsive azo functional group, this task-specific JJU-1 displays a reversible stimuli-responsive adsorption property triggered by UV irradiation and heat treatment. The initial Brunauer–Emmet–Teller (BET) surface area of this porous material is 467 m2 g–1. The CO2 sorption isotherms exhibit a slight decrease after UV irradiation because of the trans to cis conversion of the azo functional skeleton. It is worth mentioning that the responsive CO2 adsorption performance can be recycled for three cycles via alternating external stimuli, confirming the excellently reversible switchability of trans-to-cis isomerization and controllable CO2 adsorption.  相似文献   

17.
《化学:亚洲杂志》2017,12(24):3110-3113
We developed a metalloligand strategy to construct porous frameworks, viz. the combined use of IrIII‐based octahedral metalloligands and the linear unit [Ni(cyclam)] easily afforded two isostructural complexes 1 and 2 with primitive cubic frameworks. Both complexes show good CO2/N2 separation property.  相似文献   

18.
19.
A novel porous organic polymer (POP) has been constructed through the condensation of triptycene tricatechol and 1,3,5‐benzenetris(4‐phenylboronic acid). This triptycene‐based POP exhibited high H2 uptake (up to 1.84 wt% at 77 K, 1 bar), large CO2 adsorption capacity (up to 18.1 wt% at 273K, 1 bar), and excellent CO2/N2 adsorption selectivity (up to 120/1). The influence of solvent on the gas adsorption performance of the POP has also been investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号