首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimental investigation of intermolecular charge transport in π-conjugated materials is challenging. Herein, we describe the investigation of charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions by the mechanically controllable break junction (MCBJ) technique. We found that the ability for intermolecular charge transport through different single-stacking junctions was approximately independent of the molecular structure, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge-transport path of molecules with two anchors transited from an intramolecular to an intermolecular path when the degree of conjugation increased. An increase in conjugation further led to higher binding probability owing to the variation in binding energies, as supported by DFT calculations.  相似文献   

2.
The van der Waals interactions (vdW) between π-conjugated molecules offer new opportunities for fabricating heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. The experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale.

Charge transport through single-molecule bilayer-graphene junctions fabricated by a cross-plane break junction technique can be tuned at the atomic level.  相似文献   

3.
The charge transport through single-molecule electronic devices can be controlled mechanically by changing the molecular geometrical configuration in situ, but the tunable conductance range is typically less than two orders of magnitude. Herein, we proposed a new mechanical tuning strategy to control the charge transport through the single-molecule junctions via switching quantum interference patterns. By designing molecules with multiple anchoring groups, we switched the electron transport between the constructive quantum interference (CQI) pathway and the destructive quantum interference (DQI) pathway, and more than four orders of magnitude conductance variation can be achieved by shifting the electrodes in a range of about 0.6 nm, which is the highest conductance range ever achieved using mechanical tuning.  相似文献   

4.
Benefiting from the development of molecular electronics and molecular plasmonics, the interplay of light and electronic transport in molecular junctions has attracted growing interest among researchers in both fields, leading to a new research direction of “single-molecule optoelectronics”. Here, we review the latest developments of photo-modulated charge transport, electroluminescence and Raman spectroscopy from single-molecule junctions, and suggest future directions for single-molecule optoelectronics.  相似文献   

5.
Quantum interference(QI) effects, which offer unique opportunities to widely manipulate the charge transport properties in the molecular junctions, will have the potential for achieving high thermopower.Here we developed a scanning tunneling microscope break junction technique to investigate the thermopower through single-molecule thiophene junctions. We observed that the thermopower of 2,4-TPSAc with destructive quantum interference(DQI) was nearly twice of 2,5-TP-SAc without DQI, while the con...  相似文献   

6.
分子电子学是研究单分子器件的构筑、性质以及功能调控的一门新兴学科。其中,金属/分子/金属结的构筑和表征是现阶段分子电子学的主要研究内容。裂结技术是当前分子电子学研究的主要实验方法,主要包括机械可控裂结技术和扫描隧道显微镜裂结技术。本文对裂结技术进行了介绍,并对近年来利用这些技术,在单分子尺度化学反应的检测和动力学研究,以及将这些技术与溶液环境、静电场、电化学门控等方法相结合,调控单分子器件的电输运性质等方面所取得的进展进行了概述。  相似文献   

7.
Wang  Gan  Zeng  Biao-Feng  Zhao  Shi-Qiang  Qian  Qiao-Zan  Hong  Wenjing  Yang  Yang 《中国科学:化学(英文版)》2019,62(10):1333-1345
State-of-the-art molecular electronics focus on the measurement of electrical properties of materials at the single-molecule level.Experimentally, molecular electronics face two primary challenges. One challenge is the reliable construction of single-molecule junctions, and the second challenge is the arbitrary modulation of electron transport through these junctions. Over the past decades, electrochemistry has been widely adopted to meet these challenges, leading to a wealth of novel findings. This review starts from the application of electrochemical methods to the fabrication of nanogaps, which is an essential platform for the construction of single-molecule junctions. The utilization of electrochemistry for the modification of molecular junctions,including terminal groups and structural backbones, is introduced, and finally, recent progress in the electrochemical modulation of single-molecule electron transport is reviewed.  相似文献   

8.
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.  相似文献   

9.
We show that individual vibrational modes in single-molecule junctions with asymmetric molecule-lead coupling can be selectively excited by applying an external bias voltage. Thereby, a non-statistical distribution of vibrational energy can be generated, that is, a mode with a higher frequency can be stronger excited than a mode with a lower frequency. This is of particular interest in the context of mode-selective chemistry, where one aims to break specific (not necessarily the weakest) chemical bond in a molecule. Such mode-selective vibrational excitation is demonstrated for two generic model systems representing asymmetric molecular junctions and/or scanning tunneling microscopy experiments. To this end, we employ two complementary theoretical approaches, a nonequilibrium Green's function approach and a master equation approach. The comparison of both methods reveals good agreement in describing resonant electron transport through a single-molecule contact, where differences between the approaches highlight the role of non-resonant transport processes, in particular co-tunneling and off-resonant electron-hole pair creation processes.  相似文献   

10.
Borinium ions, that is, two‐coordinate boron cations, are the most electron‐deficient isolable boron compounds. As borinium ions have only four formal valence electrons on boron, they should show a strong tendency to accept electron pairs on the boron atom to fill its valence shell. Thus chemical reactions of borinium ions are expected to give products in which the coordination number of boron is increased from two to three or four. However, contrary to this expectation, we found that the dimesitylborinium ion (Mes2B+) undergoes twofold 1,2‐carboboration reactions with two equivalents of diphenylacetylene to yield an unprecedented borinium ion ( 1 +) with two substituted vinyl groups on the boron center. NMR spectroscopy and X‐ray diffraction analysis of 1 +, together with electronic‐structure calculations, revealed that the positive charge is delocalized over the entire π‐conjugated system. The fact that the chemical transformation of a borinium ion gives rise to a different borinium ion without a change in the coordination number is remarkable and should provide new insight into the chemistry of the Group 13 elements.  相似文献   

11.
The electrical characterization on single-molecule benzene dithiols with different connectivities showed that the meta-BDT has the lowest conductance, which suggested that there is destructive quantum.  相似文献   

12.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

13.
The emerging field of BioMolecular Electronics aims to unveil the charge transport characteristics of biomolecules with two primary outcomes envisioned. The first is to use nature's efficient charge transport mechanisms as an inspiration to build the next generation of hybrid bioelectronic devices towards a more sustainable, biocompatible and efficient technology. The second is to understand this ubiquitous physicochemical process in life, exploited in many fundamental biological processes such as cell signalling, respiration, photosynthesis or enzymatic catalysis, leading us to a better understanding of disease mechanisms connected to charge diffusion. Extracting electrical signatures from a protein requires optimised methods for tethering the molecules to an electrode surface, where it is advantageous to have precise electrochemical control over the energy levels of the hybrid protein–electrode interface. Here, we review recent progress towards understanding the charge transport mechanisms through protein–electrode–protein junctions, which has led to the rapid development of the new BioMolecular Electronics field. The field has brought a new vision into the molecular electronics realm, wherein complex supramolecular structures such as proteins can efficiently transport charge over long distances when placed in a hybrid bioelectronic device. Such anomalous long-range charge transport mechanisms acutely depend on specific chemical modifications of the supramolecular protein structure and on the precisely engineered protein–electrode chemical interactions. Key areas to explore in more detail are parameters such as protein stiffness (dynamics) and intrinsic electrostatic charge and how these influence the transport pathways and mechanisms in such hybrid devices.  相似文献   

14.
A stepwise synthetic method for 9,10-dihydro-9,10-diboraanthracene was developed, and the optical and electrochemical properties as well as the molecular structure of the 9,10-dihydro-9,10-diboraanthracene were elucidated. The 9,10-dihydro-9,10-diboraanthracene exhibited high complexation ability against fluoride ion, and the complexation was accompanied by the enhancement of photoluminescence emission, probably due to intramolecular charge transfer between the two boron atoms.  相似文献   

15.
The experimental investigation of intermolecular charge transport in π‐conjugated materials is challenging. Herein, we describe the investigation of charge transport through intermolecular and intramolecular paths in single‐molecule and single‐stacking thiophene junctions by the mechanically controllable break junction (MCBJ) technique. We found that the ability for intermolecular charge transport through different single‐stacking junctions was approximately independent of the molecular structure, which contrasts with the strong length dependence of conductance in single‐molecule junctions with the same building blocks, and the dominant charge‐transport path of molecules with two anchors transited from an intramolecular to an intermolecular path when the degree of conjugation increased. An increase in conjugation further led to higher binding probability owing to the variation in binding energies, as supported by DFT calculations.  相似文献   

16.
We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Green's functions and ab initio calculations to study the inelastic transport properties of single-molecule junctions. First, we apply a full non-equilibrium Green's function technique to a model system with electron-vibration coupling. We show that the features in the inelastic electron tunneling spectra (IETS) of the molecular junctions are virtually independent of the nature of the molecule-lead contacts. Since the contacts are not easily reproducible from one device to another, this is a very useful property. The IETS signal is much more robust versus modifications at the contacts and hence can be used to build functional nanodevices. Second, we consider a realistic model of a organic conjugated molecule. We use ab initio calculations to study how the vibronic properties of the molecule can be controlled by an external electric field which acts as a gate voltage. The control, through the gate voltage, of the vibron frequencies and (more importantly) of the electron-vibron coupling enables the construction of functionality: nonlinear amplification and/or switching is obtained from the IETS signal within a single-molecule device.  相似文献   

17.
用密度泛函理论B3LYP/6-31G**计算巯基偶氮苯分子及分子离子的空间构型和电子结构, 研究取代基对巯基偶氮苯单分子电子传输的影响. 结果表明, 拉电子基(—COOH、—NO2)的引入, 可以提高巯基偶氮苯单分子电子传输体系的稳定性, 使体系LUMO的离域性增高、S原子反应活性增强、HOMO-LUMO能隙显著减小, 进而降低电子传输能垒, 有利于分子电子传输. 相同取代基的分子离子比分子具有更小的HOMO-LUMO能隙, S—Au键更易形成, 金属-分子-金属结构的电子传输性更强.  相似文献   

18.
In single-molecule junctions, anchoring groups that connect the central molecule to the electrodes have profound effects on the mechanical and electrical properties of devices. The mechanical strength of the anchoring groups affects the device stability, while their electronic coupling strength influences the junction conductance and the conduction polarity. To design and fabricate high-performance single-molecule devices with graphene electrodes, it is highly desirable to explore robust anchoring groups that bond the central molecule to the graphene electrodes. Condensation of ortho-phenylenediamine terminated molecules with ortho-quinone moieties at the edges of graphene generates graphene-conjugated pyrazine units that can be employed as anchoring groups for the construction of molecular junctions with graphene electrodes. In this study, we investigated the fabrication and electrical characterization of single-molecule field-effect transistors (FETs) with graphene as the electrodes, pyrazine as the anchoring groups, and a heavily doped silicon substrate as the back-gate electrode. Graphene nano-gaps were fabricated by a high-speed feedback-controlled electro-burning method, and their edges were fully oxidized; thus, there were many ortho-quinone moieties at the edges. After the deposition of phenazine molecules with ortho-phenylenediamine terminals at both ends, a large current increase was observed, indicating that molecular junctions were formed with covalent pyrazine anchoring groups. The yield of the single-molecule devices was as high as 26%, demonstrating the feasibility of pyrazine as an effective anchoring group for graphene electrodes. Our electrical measurements show that the ten fabricated devices exhibited a distinct gating effect when a back-gate voltage was applied. However, the gate dependence of the conductance varied considerably from device to device, and three types of different gate modulation behaviors, including p-type, ambipolar, and n-type conduction, were observed. Our observations can be understood using a modified single-level model that takes into account the linear dispersion of graphene near the Dirac point; the unique band structure of graphene and the coupling strength of pyrazine with the graphene electrode both crucially affect the conduction polarity of single-molecule FETs. When the coupling strength of pyrazine with the graphene electrode is weak, the highest occupied molecular orbital (HOMO) of the central molecule dominates charge transport. Depending on the gating efficiencies of the HOMO level and the graphene states, devices can exhibit p-type or ambipolar conduction. In contrast, when the coupling is strong, the redistribution of electrons around the central molecule and the graphene electrodes leads to a realignment of the molecular levels, resulting in the lowest unoccupied molecular orbital (LUMO)-dominated n-type conduction. The high yield and versatility of the pyrazine anchoring groups are beneficial for the construction of single-molecule devices with graphene electrodes.  相似文献   

19.
Molecular quantum-dot cellular automata (QCA) is a promising paradigm for realizing molecular electronics. In molecular QCA, binary information is encoded in the distribution of intramolecular charge, and Coulomb interactions between neighboring molecules combine to create long-range correlations in charge distribution that can be exploited for signal transfer and computation. Appropriate mixed-valence species are promising candidates for single-molecule device operation. A complication arises because many mixed-valence compounds are ions and the associated counterions can potentially disrupt the correct flow of information through the circuit. We suggest a self-doping mechanism which incorporates the counterion covalently into the structure of a neutral molecular cell, thus producing a zwitterionic mixed-valence complex. The counterion is located at the geometrical center of the QCA molecule and bound to the working dots via covalent bonds, thus avoiding counterion effects that bias the system toward one binary information state or the other. We investigate the feasibility of using multiply charged anion (MCA) boron clusters, specifically closo-borate dianion, as building blocks. A first principle calculation shows that neutral, bistable, and switchable QCA molecules are possible. The self-doping mechanism is confirmed by molecular orbital analysis, which shows that MCA counterions can be stabilized by the electrostatic interaction between negatively charged counterions and positively charged working dots.  相似文献   

20.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号