首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ripening of the grains occurs as the thickness of the film increases. Raman spectra of the Ge films reveal phonon confinement along the growth direction and show that the misfit strain is relieved for film thickness greater than 4 nm. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

2.
The development of new thin film fabrication techniques that allow for precise control of degradation and drug release properties could represent an important advance in the fields of drug delivery and biomedicine. Polyelectrolyte layer-by-layer (LBL) thin films can be assembled with nanometer scale control over spatial architecture and morphology, yet very little work has focused on the deconstruction of these ordered thin films for controlled release applications. In this study, hydrolytically degradable LBL thin films are constructed by alternately depositing a degradable poly(beta-amino ester) (polymer 1) and a series of model therapeutic polysaccharides (heparin, low molecular weight heparin, and chondroitin sulfate). These films exhibit pH-dependent, pseudo-first-order degradation and release behavior. The highly versatile and tunable properties of these materials make them exciting candidates for the controlled release of a wide spectrum of therapeutics.  相似文献   

3.
Seo I  Martin SW 《Inorganic chemistry》2011,50(6):2143-2150
In this study, lithium thio-germanate thin film electrolytes have been successfully prepared by radio frequency (RF) magnetron sputtering deposition in Ar gas atmospheres. The targets for RF sputtering were prepared by milling and pressing appropriate amounts of the melt-quenched starting materials in the nLi(2)S + GeS(2) (n = 1, 2, and 3) binary system. Approximately 1 μm thin films were grown on Ni coated Si (Ni/Si) substrates and pressed CsI pellets using 50 W power and 25 mtorr (~3.3 Pa) Ar gas pressures to prepare samples for Raman and Infrared (IR) spectroscopy, respectively. To improve the adhesion between the silicon substrate and the thin film electrolyte, a sputtered Ni layer (~120 nm) was used. The surface morphologies and thickness of the thin films were determined by field emission scanning electron microscopy (FE-SEM). The structural properties of the starting materials, target materials, and the grown thin films were examined by X-ray diffraction (XRD), Raman, and IR spectroscopy.  相似文献   

4.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   

5.
We report on the use of dynamic scale theory and fractal analyses in the study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed on glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The granular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules.  相似文献   

6.
Nanostructured films from two conducting polymers, poly(o-methoxyaniline) (POMA) and poly(3-thiopheneacetic acid) (PTAA), were fabricated with the layer-by-layer (LBL) technique. The electrochemical response of the LBL films differs from that of a POMA cast film, even in a potential range where PTAA is inactive. This is attributed to differences in the diffusion-controlled charge and mass transport, where distinct ionic species participate in the LBL films, as demonstrated by quartz crystal microbalance measurements. The results show that the transport properties of conducting polymers can be changed by alternation with layers of appropriate materials in LBL films.  相似文献   

7.
The aim of this contribution is to present the properties of the nanostructured hydrogenated carbon thin films and to study their growth carried out in a special deposition technique based on Thermionic Vacuum Arc method. The Gaseous Thermionic Vacuum Arc (G-TVA) technology is an original deposition method performed in a special configuration, consisting of a heated thermionic cathode which provides an electron beam on the anode. The surface free energy was evaluated by contact angle and their optical properties were studied by Filmetrics F20 spectrometry system. Structure of the film has been investigated by Raman spectroscopy as well as the mechanical properties like hardness, wear resistance, film-substrate adhesion. The films showed two distinct Raman characteristic peaks located at 1,350 cm−1 (D-line) and 1,550 cm−1 (G-line), broad for Si and very sharp for glass substrates. The G-TVA enables to prepare soft (hardness ~6 GPa) or hard (~24 GPa) films.  相似文献   

8.
(110)‐oriented zeolitic imidazolate framework (ZIF)‐8 thin films with controllable thickness are successfully deposited on indium tin oxide (ITO) electrodes at room temperature. The method applied uses 3‐aminopropyltriethoxysilane (APTES) in the form of self‐assembled monolayers (SAMs), followed by a subsequent adoption of the layer‐by‐layer (LBL) method. The crystallographic preferential orientation (CPO) index shows that the ZIF‐8 thin films are (110)‐oriented. A possible mechanism for the growth of the (110)‐oriented ZIF‐8 thin films on 3‐aminopropyltriethoxysilane modified ITO is proposed. The observed cross‐sectional scanning electron microscopy (SEM) images and photoluminescent (PL) spectra of the ZIF‐8 thin films indicate that the thickness of the ZIF‐8 layers is proportional to the number of growth cycles. The extension of such a SAM method for the fabrication of ZIF‐8 thin films as described herein should be applicable in other ZIF materials, and the as‐prepared ZIF‐8 thin films on ITO may be explored for photoelectrochemical applications.  相似文献   

9.
10.
Multilayered thin films containing poly(allylamine) (PAA) and brilliant yellow (BY) were prepared on a quartz slide by a layer-by-layer (LBL) deposition technique. The UV-visible spectra of the PAA/BY films were sufficiently changed depending upon the pH value of the solution in which the film was immersed. The response of the PAA/BY films was very fast (within a second) upon pH change from 9.0 to 5.0, while the response time was ca. 100 s upon pH change from 5.0 to 9.0.  相似文献   

11.
12.
Poly(ethylene oxide) (PEO) is a key material in solid polymer electrolytes, biomaterials, drug delivery devices, and sensors. Through the use of hydrogen bonds, layer-by-layer (LBL) assemblies allow for the incorporation of PEO in a controllable tunable thin film, but little is known about the bulk properties of LBL thin films because they are often tightly bound to the substrate of assembly. The construction technique involves alternately exposing a substrate to a hydrogen-bond-donating polymer (poly(acrylic acid)) and a hydrogen-bond-accepting polymer (PEO) in solution, producing mechanically stable interdigitated layers of PEO and poly(acrylic acid) (PAA). Here, we introduce a new method of LBL film isolation using low-energy surfaces that facilitate the removal of substantial mass and area of the film, allowing, for the first time, the thermal and mechanical characterization that was previously difficult or impossible to perform. To further understand the morphology of the nanoscale blend, the glass transition is measured as a function of assembly pH via differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The resulting trends give clues as to how the morphology and composition of a hydrogen-bonded composite film evolve as a function of pH. We also demonstrate that LBL films of PEO and PAA behave as flexible elastomeric blends at ambient conditions and allow for nanoscale control of thickness and film composition. Furthermore, we show that the crystallization of PEO is fully suppressed in these composite assemblies, a fact that proves advantageous for applications such as ultrathin hydrogels, membranes, and solid-state polymer electrolytes.  相似文献   

13.
Hot-wall epitaxy and molecular-beam epitaxy have been employed for growing quaterthiophene thin films on the (010) cleavage face of potassium hydrogen phthalate, and the results are compared in terms of film properties and growth mode. Even if there is no geometrical match between substrate and overlayer lattices, these films are epitaxially oriented. To investigate the physical rationale for this strong orientation effect, optical microscopy, atomic force microscopy, and X-ray diffraction are employed. A clear correlation between the morphology of the thin films and the crystallographic orientation is found. The results are also validated by surface potential calculations, which demonstrate the primary role played by the corrugation of the substrate surface.  相似文献   

14.
《Liquid crystals》1998,25(6):643-654
Freely-suspended liquid crystalline films of ethyl 4'-n-octyloxybiphenyl-4-carboxylate (28OBC) were prepared and transferred onto different substrates which enable detailed structural characterization. The structures of these thin film assemblies, which are only accessible in this way, were determined and compared with the crystal and molecular structure of 28OBC as formed by crystallization from toluene solution. The compound crystallizes in the monoclinic space group P21/c, a = 11.168(1) A, b = 7.595(2) A, c = 49.106(1) A, beta = 94.01(1) degree, Z = 8. The two symmetrically independent molecules of the asymmetric unit have been used as starting geometries for semi-empirical MO calculations. The difference between the experimentally observed and the optimized molecular structures is interpreted as the influence of the crystal field. The structures of the crystalline and E film phases have been investigated by SAXR and TED and the former has been found to be different from the bulk structure. The structural relationships between the different phases are discussed and a suggestion for the crystalline film structure is given as deduced from simulations of electron diffraction patterns.  相似文献   

15.
The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have beenelectrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in borontrifluoride diethyl etherate (BFEE) at a constant applied potential of 1.38 V (versus SCE), have been investigated byexcitation with a 633-nm laser beam. The spectroscopic results demonstrated that the doping level of PMeT film wasincreasing during film growth. This finding was also confirmed by electrochemical examination. Moreover, the Raman bandsassigned to radical cations and dications in doped PMeT films were found approximately at 1420 and 1400 cm~(-1),respectively. Radical cations and dications coexist on the backbone of PMeT as conductive species and their concentrationsincrease with the increase of doping level. Successive cyclic voltammetry was proved to be an effective approach toimproving the doping level of as-grown thin compact PMeT film.  相似文献   

16.
Nanolithography processes based on designed, precision thickness multilayer thin films (molecular rulers) have been reported that enable patterning of features on surfaces from a few to the hundred nanometer range. These strategies are unique in their potential ability to enable wafer scale patterning of features of just a few nanometers. If these techniques could be developed to be sufficiently precise and generally applicable, they would fill a long-standing need in nanoscience. In this study a systematic and detailed analysis of the growth mechanisms and molecular layer structures has been carried out for the mercaptoalkanoic acid-copper ion multilayer thin film system currently used as the standard nanolithography resist. Our results show these films form via a redox reaction of thiol groups with surface-ligated Cu(II) ions to form adlayers at only approximately 50% coverage with islanding of the alkyl chains, thereby leading to rough topographies and less than theoretical thicknesses based on a 1:1 ideal adlayer. Strategies are suggested to help overcome these issues for molecular resist applications in nanolithographic processing.  相似文献   

17.
Atomic layer-deposited ZrO(2) (zirconia) and HfO(2) (hafnia) films with various thicknesses, ranging from 112 to 660 nm, have been studied by Raman scattering spectroscopy. Spectral analysis of the excellent quality Raman data obtained by using freestanding edges of the films has unambiguously demonstrated that a metastable tetragonal t-ZrO(2) is coexisting with the stable monoclinic phase in zirconia films. Even though the Raman spectrum signal-to-noise ratio was high, only the monoclinic phase was positively identified from the observed spectral patterns of hafnia films. X-ray diffraction patterns are used to define the structure of metastable phases. Complementary Brillouin light scattering measurements of the freestanding edges are also employed in constraining elastic properties of the 405 nm HfO(2) thin film.  相似文献   

18.
Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno[2,3-b]thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on charge carrier mobility are discussed.  相似文献   

19.
Based on hydrogen-bonding layer-by-layer (LBL) assembly in aqueous solution, poly(vinylpyrrolidone) (PVPON) and a spherical polymer brush with a poly(methylsilsesquioxane) (PSQ) core and poly(acrylic acid) (PAA) hair chains were used to fabricate composite multilayer thin films. Hydrogen bonding as the driving force was confirmed by FT-IR spectrometry. A simple method (Filmetric F20) was introduced to determine the thickness and refractive index of the films. The film thickness was found to be a linear function of the number of bilayers. The average increase in thickness per bilayer is 28.3 nm. The film morphology was characterized with scanning electron microscopy and atomic force microscopy. The images obtained from the two instruments show a great resemblance. The films were further calcined to get an inorganic film by removing the organic components, or treated with tetrabutylammonium fluoride (TBAF) to remove the PSQ core and get an organic film. The optical properties and morphological changes induced by these treatments were also studied.  相似文献   

20.
Polycrystalline La(2)NiMnO(6) thin films are prepared on Pt/Ti/SiO(2)/Si substrates by the sol-gel method. Through controlling the processing parameters, the cation ordering can be tuned. The disordered and ordered thin films exhibit distinct differences for crystal structures as well as properties. The crystal structure at room temperature characterized by X-ray diffraction and Raman spectra is suggested to be monoclinic (P2(1)/n) and orthorhombic (Pbnm) for the ordered and disordered thin films, respectively. The ferromagnetic-paramagnetic transition is 263 K and 60 K for the ordered and disordered samples respectively, whereas the saturation magnetic moment at 5 K is 4.9 μ(B) fu(-1) (fu = formula unit) and 0.9 μ(B) fu(-1). The dielectric constant as well as magnetodielectric effect is higher for the ordered La(2)NiMnO(6) thin films. The magnetodielectric effect for the ordered thin film is dominantly contributed to the intrinsic coupling of electric dipole ordering and fluctuations and magnetic ordering and fluctuations, while it is mainly contributed to Maxwell-Wagner (M-W) effects for the disordered thin film. The successful achievements of ordered and disordered polycrystalline La(2)NiMnO(6) thin films will provide an effective route to fabricate double-perovskite polycrystalline thin films by the sol-gel method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号