首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1–6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on‐top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2–4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd–even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

3.
崔小英  武海顺 《中国化学》2005,23(2):117-120
B3LYP/6-31G* density functional theory calculations have been carried out on the structure and stability of ten B20N20 clusters. It was found that two new proposed isomers with two octagons, twelve hexagons, eight squares in Cab and C2 symmetry were more stable than the isomer with sixteen hexagons and six squares in C2 symmetry which was previously deemed to the most stable by 79.5 and 13.8 kJ/mol respectively. The isomer with two decagons in S10 symmetry is much higher in energy than the most stable structure in C4h symmetry by 637.2 kJ/mol.  相似文献   

4.
A density functional theory investigation on the geometries, electronic structures, and electron detachment energies of BS, BS2, B(BS)2 and B(BS)3 has been performed in this work. The linear ground-state structures of BS (C∞v, ^1∑^+) and BS2^- (O∞h, ^1∑g^+) prove to be similar to the previously reported BO and BO2 with systematically lower electron detachment energies. Small boron sulfide clusters are found to favor the formation of -B=S groups which function basically as a-radicals and dominate the ground-state structures of the systems. The perfect linear B(BS)2^-(D∞h, ^3∑g) and beautiful equilateral triangle B(BS)3^- (D3h,^2A1”) turn out to be analogous to the well-known C2v BH2 and O3h BH3, respectively. The electron affinities of BS, BS2, B(BS)2 and B(BS)3 are predicted to be 2.3, 3.69, 3.00 and 3.45 eV, respectively. The electron detachment energies calculated for BS^-, BS2^-, B(BS)2^-, and B(BS)3^- may facilitate future photoelectron spectroscopy measurements to characterize the geometrical and electronic structures of these anions.  相似文献   

5.
6.
Density functional theory (DFT) B3LYP method is used to theoretically investigate the adsorption conformations of H2O and glycol on the relaxation surface of β-Si3N4(0001) with cluster models. For H2O, the most stable structure is that adsorbed through the H atom lying above a N(3) site of the relaxation surface of β-Si3N4(0001); while for glycol, it is the one adsorbed via the H atom lying above the center of Si(2) and N(3) of the same relaxation surface. The adsorption energy, adsorption bond and transfer electrons of the two adsorbed substances prove that glycol is easy to be adsorbed on the relaxation surface of β-Si3N4(0001).  相似文献   

7.
8.
    
Single-atom catalysts embedded in N-doped graphene have attracted great interest recently, but the hexagonal boron nitride (h-BN) is much less explored as a support. Using first principles density function theory and molecular dynamics, here we investigate the stability of Pt, Au, and Ru single atoms anchored at B and N vacancies on h-BN. We find that Pt and Ru single atoms are much more stable than Au on h-BN. We further examine propane dehydrogenation on these single-atom catalysts and find that Pt1 at the B vacancy in h-BN and Ru1 at the N vacancy in h-BN show excellent activity for propane dehydrogenation, as evidenced by low energy barriers for both dehydrogenation steps. Our work suggests that Pt and Ru single atoms anchored at vacancy sites in h-BN could be promising for propane dehydrogenation.  相似文献   

9.
Dodecahydro‐N‐ethylcarbazole (H12‐NEC) has been proposed as a potential liquid organic hydrogen carrier (LOHC) for chemical energy storage, as it combines both favourable physicochemical and thermodynamic properties. The design of optimised dehydrogenation catalysts for LOHC technology requires a detailed understanding of the reaction pathways and the microkinetics. Here, we investigate the dehydrogenation mechanism of H12‐NEC on Pd(111) by using a surface‐science approach under ultrahigh vacuum conditions. By combining infrared reflection–absorption spectroscopy, density functional theory calculations and X‐ray photoelectron spectroscopy, surface intermediates and their stability are identified. We show that H12‐NEC adsorbs molecularly up to 173 K. Above this temperature (223 K), activation of C? H bonds is observed within the five‐membered ring. Rapid dehydrogenation occurs to octahydro‐N‐ethylcarbazole (H8‐NEC), which is identified as a stable surface intermediate at 223 K. Above 273 K, further dehydrogenation of H8‐NEC proceeds within the six‐membered rings. Starting from clean Pd(111), C? N bond scission, an undesired side reaction, is observed above 350 K. By complementing surface spectroscopy, we present a temperature‐programmed molecular beam experiment, which permits direct observation of dehydrogenation products in the gas phase during continuous dosing of the LOHC. We identify H8‐NEC as the main product desorbing from Pd(111). The onset temperature for H8‐NEC desorption is 330 K, the maximum reaction rate is reached around 550 K. The fact that preferential desorption of H8‐NEC is observed even above the temperature threshold for H8‐NEC dehydrogenation on the clean surface is attributed to the presence of surface dehydrogenation and decomposition products during continuous reactant exposure.  相似文献   

10.
胡承忠  李峰  刘向东 《化学学报》2008,66(14):1641-1646
采用密度泛函理论计算研究了氮化硼纳米管及碳掺杂氮化硼纳米管对CH4, CO2, H2, H2O, N2, NH3, NO2, O2, F2等十余种气体小分子的气敏特性. 研究结果表明: 氮化硼纳米管对CH4, CO2, H2, H2O, N2, NH3等气体分子不敏感, 而对O2, NO2, F2等气体分子比较敏感. 虽然碳掺杂氮化硼纳米管可以明显地改变其表面的化学反应活性, 增强了气体分子与氮化硼纳米管之间的相互作用, 但是并不能明显地改变其对所研究气体分子的敏感性.  相似文献   

11.
王若曦 《化学学报》2010,68(4):315-319
为了探索氮化硼纳米管(BNNT)在化学传感器件领域的潜在应用,我们利用密度泛函理论研究了(8,0)单壁BNNT和硅掺杂的(8,0)BNNT对毒性气体氯化氰分子(ClCN)的吸附性能.结果表明,硼位或氮位硅掺杂的BNNT,均对ClCN分子存在较强的化学吸附,而纯氮化硼纳米管对ClCN仅有较弱的物理吸附.态密度的计算进一步表明硅掺杂使纳米管费米能级附近的电子结构发生显著变化,由于杂化态的引入,使带隙明显减小,增强了对毒性ClCN分子的吸附敏感性.硅掺杂的BNNT有望成为检测毒性ClCN分子的潜在资源.  相似文献   

12.
Using the generalized gradient approximation to density functional theory (DFT), molecular and dissociative oxygen adsorptions on a Pu (111) surface has been studied in detail. Dissociative adsorption with a layer‐by‐layer alternate spin arrangement of the plutonium layer is found to be energetically more favorable, and adsorption of oxygen does not change this feature. Hor1 (O2 is parallel to the surface and lattice vectors) approach on the center2 (center of the unit cell, where there is a Pu atom directly below on the third layer) site, both without and with spin polarization, was found to be the preferred chemisorbed site among all cases studied with chemisorption energies of 8.365 and 7.897 eV, respectively. The second‐highest chemisorption energy occurs at the Ver (O2 is vertical to the surface) approach of the bridge site with chemisorption energies of 8.294 eV (non‐spin‐polarized) and 7.859 eV (spin‐polarized), respectively. We find that 5f electrons are more localized in the spin‐polarized case than the non‐spin‐polarized counterparts. Localization of the 5f electrons is higher in the oxygen‐adsorbed plutonium layers compared with the bare layers. The ionic part of O? Pu bonding plays a significant role in the chemisorption process, along with Pu 5f? O 2p hybridization. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
Ni‐CeO2 is a highly efficient, stable and non‐expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density‐functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2?x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.  相似文献   

14.
Investigations of the intrinsic properties of gas‐phase transition metal nitride (TMN) ions represent one approach to gain a fundamental understanding of the active sites of TMN catalysts, the activities and electronic structures of which are known to be comparable to those of noble metal catalysts. Herein, we investigate the structures and reactivities of the triatomic anions HNbN? by means of mass spectrometry and photoelectron imaging spectroscopy, in conjunction with density functional theory calculations. The HNbN? anions are capable of activating CH4 and C2H6 through oxidative addition, exhibiting similar reactivities to free Pt atoms. The similar electronic structures of HNbN? and Pt, especially the active orbitals, are responsible for this resemblance. Compared to the inert NbN?, the coordination of the H atom in HNbN? is indispensable. New insights into how to replace noble metals with TMNs may be derived from this combined experimental/computational study.  相似文献   

15.
利用密度泛函理论研究了CO2在Fe3O4(111)表面Fetet1和Feoct2两种终结的吸附行为。在Fetet1终结表面,当覆盖度为1/5 ML时,CO2倾向于线性吸附;而在高覆盖度下,弯曲的CO2与表面O作用形成CO32-结构。在Feoct2终结表面,CO2倾向于弯曲吸附,在1/6 ML和1/3 ML覆盖度时都可以形成CO32-和-COO结构。覆盖度对Fetet1终结的表面影响很弱,但是对Feoct2终结的表面影响很大。从热力学上来说,CO2在Feoct2终结表面的吸附要比Fetet1终结表面更有利。  相似文献   

16.
17.
    
Boron and boron containing materials have created a new class of catalysts for the highly selective conversion of light alkanes to building block olefins. Boron oxide species seem to play an essential role for the oxidative dehydrogenation of propane. For boron nitride they are created through an induction process under reaction conditions. It is still not obvious how different kinds of oxidative pre-activation influences the observed activity and selectivity. Here we compare two different oxygen activation strategies of boron nitride, a classical activation by calcination at different temperatures and ball-milling with varying rotation velocity. These treatments allow to control the amount of introduced boron oxide species from 0.2 to 17.5 wt.-%, as quantified by alkalimetric titration. The catalytic experimental data together with the pre, post as well as in situ characterization, give insights how the catalyst's surface changes under reaction conditions. On this backdrop it can be deduced that molten boron oxide predominantly acts as catalyst under reaction conditions, and boron nitride as catalyst support.  相似文献   

18.
    
The effect of an octagonal lattice configuration on a boron nitride nanotube is explored using first principle calculations. Calculations show that the formational energy of an octagonal boron nitride nanotube (o‐BNNT) is an exothermic reaction. Boron and nitrogen atoms within an o‐BNNT have an average of 2.88 electrons and 9.09 electrons, respectively, indicating ionic‐like bonding. In addition, the electronic structure of the octagonal boron nitride nanotube shows semiconductive properties, while h‐BNNT is reported to be an insulator. Additional o‐BNNTs with varying diameters are calculated where the results suggest that the diameter has an effect on the binding energy and bandgap of the o‐BNNT. The defect sites of the o‐BNNT are reactive against hydrogen where a boron defect is particularly reactive. Thus, this work suggests that physical and chemical properties of a boron nitride nanotube can be tailored and tuned by controlling the lattice configuration of the nanotube.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号