首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of LiEt3BH to CpWMe(CO)3 results in consecutive formation of trans-[CpWMe(CHO)(CO)2] (some of which exists in solution as two rotamers of a BEt3 adduct) and trans[CpWH(COMe)(CO)2]. Reaction of the latter with CHI3 and subsequent treatment of the product with either (i) Me3SiCl, followed by filtration through SiO2 or (ii) Me3OBF4 gives hydroxy- or methoxy-carbenes CpWI[C(OR)Me](CO)2 (R H or Me), respectively.  相似文献   

2.
3.
Tri-2-disulfido-3-thiotris(diethyldithiocarbamato)-S,S'-triangle-trimolybdenum bromide [Mo3(3-S)(2-S2)3(Et2NCS2)3 +Br- was obtained and characterized.  相似文献   

4.
Superelectrophilic monoanions [B12(BO)11] and [B12(OBO)11], generated from stable dianions [B12(BO)12]2− and [B12(OBO)12]2−, show great potential for binding with noble gases (Ngs). The binding energies, quantum theory of atoms in molecules (QTAIM), natural population analysis (NPA), energy decomposition analysis (EDA), and electron localization function (ELF) were carried out to understand the B−Ng bond in [B12(BO)11Ng] and [B12(OBO)11Ng]. The calculated results reveal that heavier noble gases (Ar, Kr, and Xe) bind covalently with both [B12(BO)11] and [B12(OBO)11] with large binding energies, making them potentially feasible to be synthesized. Only [B12(OBO)11] could form a covalent bond with helium or neon but the small binding energy of [B12(OBO)11He] may pose a challenge for its experimental detection.  相似文献   

5.
6.
The unexpected but facile preparation of the silver salt of the least coordinating [(RO)3Al‐F‐Al(OR)3]? anion (R=C(CF3)3) by reaction of Ag[Al(OR)4] with one equivalent of PCl3 is described. The mechanism of the formation of Ag[(RO)3Al‐F‐Al(OR)3] is explained based on the available experimental data as well as on quantum chemical calculations with the inclusion of entropy and COSMO solvation enthalpies. The crystal structures of (RO)3Al←OC4H8, Cs+[(RO)2(Me)Al‐F‐Al(Me)(OR)2]?, Ag(CH2Cl2)3+[(RO)3Al‐F‐Al(OR)3]? and Ag(η2‐P4)2+[(RO)3Al‐F‐Al(OR)3]? are described. From the collected data it will be shown that the [(RO)3Al‐F‐Al(OR)3]? anion is the least coordinating anion currently known. With respect to the fluoride ion affinity of two parent Lewis acids Al(OR)3 of 685 kJ mol?1, the ligand affinity (441 kJ mol?1), the proton and copper decomposition reactions (?983 and ?297 kJ mol?1) as well as HOMO level and HOMO–LUMO gap and in comparison with [Sb4F21]?, [Sb(OTeF5)6]?, [Al(OR)4]? as well as [B(RF)4]? (RF=CF3 or C6F5) the [(RO)3Al‐F‐Al(OR)3]? anion is among the best weakly coordinating anions (WCAs) according to each value. In contrast to most of the other cited anions, the [(RO)3Al‐F‐Al(OR)3] anion is available by a simple preparation in conventional inorganic laboratories. The least coordinating character of this anion was employed to clarify the question of the ground state geometry of the Ag(η2‐P4)2+ cation (D2h, D2 or D2d?). In agreement with computational data and NMR spectra it could be shown that the rotation along the Ag‐(P‐P‐centroid) vector has no barrier and that the structure adopted in the solid state depends on packing effects which lead to an almost D2h symmetric Ag(η2‐P4)2+ cation (0 to 10.6° torsion) for the more symmetrical [Al(OR)4]? anion, but to a D2 symmetric Ag(η2‐P4)2+ cation with a 44° twist angle of the two AgP2 planes for the less symmetrical [(RO)3Al‐F‐Al(OR)3]? anion. This implies that silver back bonding, suggested by quantum chemical population analyses to be of importance, is only weak.  相似文献   

7.
The reaction of PtRu5(CO)166-C),1 with 3-hexyne in the presence of UV irradiation produced two new electron-rich platinum-ruthenium cluster complexes PtRu5(CO)13(μ-EtC2Et)(μ3-EtC2Et)(μ5-C),2 (20% yield) and Pt2Ru6(CO)17(μ-η5-Et4C5)(μ3-EtC2Et) (μ6-C),3 (7% yield). Both compounds were characterized by single-crystal X-ray diffraction analyses. Compound2 contains of a platinum capped square pyramidal cluster of five ruthenium atoms with the carbido ligand located in the center of the square pyramid. A EtC2Et ligand bridges one of the PtRu2 triangles and the Ru-Pt bond between the apical ruthenium atom and the platinum cap. The structure of compound3 consists of an octahedral PtRu5 cluster with an interstitial carbido ligand and a platinum atom capping one of the PtRu2 triangles. There is an additional Ru(CO)2 group extending from the platinum atom in the PtRu5 cluster that contains a metallated tetraethylcyclopentadienyl ligand that bridges to the platinum capping group. There is also a EtC2Et ligand bridging one of the PtRu2 triangular faces to the capping platinum atom. Compounds2 and3 both contain two valence electrons more than the number predicted by conventional electron counting theories, and both also possess unusually long metal-metal bonds that may be related to these anomalous electron configurations. Crystal data for2, space group Pna21,a=19.951(3) Å,b=9.905(2) Å,c=17.180(2) Å,Z=2, 1844 reflections,R=0.036; for3, space group Pna21,α=13.339(1) Å,b=14.671(2) Å,c=11.748(2) Å, α=100.18(1)°, β=95.79(1)°, γ=83.671(9)°,Z=2, 3127 reflections,R=0.026.  相似文献   

8.
Reactions of the phosphido-bridged complexes [Co2W(μ-H)(μ3-CC6H4Me-4)(μ-PR2)(CO)6(η-C5H5)] (R = Ph or Et) with PR2H (R = Ph or Et) or RCCR (R = Me or Et) are dominated by processes involving facile PC, CC and CH bond formation. The X-ray structures of the complexes [Co2W(μ-PEt2)3(CO)5(η-C5H5)], [Co2W{μ3-C(R)C(Et)C(Et)C(O)}(μ-CO)(CO)4(PPh2{C(Et)CHEt})(η-C5H5)], and [CoW{μ-C(R)C(Et)C(Et)C(OH)}(CO)4(η-C5H5)] (R = C6H4Me-4) have been determined.  相似文献   

9.
A new bismuth (III) iodate periodate, Bi2(IO3)(IO6) was obtained from hydrothermal reactions using Bi(NO3)3·5H2O, and H5IO6 as starting materials. Bi2(IO3)(IO6) crystallizes in the monoclinic space group P21/c (No. 14) with lattice parameters ɑ = 8.1119(6), b = 5.4746(4), c = 16.357(1) Å, β = 99.187(2)°, V = 717.07(9) Å3, Z = 4. The structure of Bi2(IO3)(IO6) features a three-dimensional framework which is a combination of [Bi(1)O5] tetragonal pyramids, [Bi(2)O8] bicapped trigonal prisms and [IO3] and [IO6]5− anions. Thermal analysis shows that the compound is thermally stable up to about 350 °C. The solid state UV-vis-NIR diffuse reflectance spectrum indicates that Bi2(IO3)(IO6) is a semiconductor with a band gap of 2.76 eV.  相似文献   

10.
The cluster [HIr5(CO)12]2- (1) was prepared by condensation of [HIr4(CO)11]- and [Ir(CO)4]- (molar ratio 1:1) in refluxing THF, with almost quantitative yields. Its solid state structure was determined by X-ray diffraction at low temperature on the salt [PPh3CH2Ph]2[HIr5(CO)12]. The metal atoms define a trigonal bipyramidal arrangement. The hydride ligand was located indirectly as a bridge between apical and equatorial metal atoms. The phosphine-substituted cluster [HIr4(CO)10PPh3]- (2) was synthetized by CO displacement on [HIr4(CO)11]-, in THF at room temperature. This reaction is selective, with no traces of polysubstitution products. In the solid state, the hydride and the triphenylphosphine are axially bound on basal iridium atoms; the terminal hydrogen atom was directly located by X-ray analysis at a Ir–H distance of 1.57(9) Å. On the contrary, two isomers are present in THF solution, and they interconvert rapidly at room temperature, as shown by1H and 31P NMR spectra.  相似文献   

11.
The preparation, X-ray structure, and variable temperature magnetic study of the new compound {Ba(H2O)3/2[Cr(pyim)(C2O4)2]2}n·9/2nH2O (1) [pyim = 2-(2′-pyridyl)imidazole and C2O42? = dianion of oxalic acid], together with the potentiometric and spectrophotometric studies of the protonation/deprotonation equilibria of the pyim ligand and the ternary complex [Cr(pyim)(C2O4)2]?, are reported herein. The crystal structure of 1 consists of neutral chains, with diamond-shaped units sharing barium(II), with the two other corners occupied by chromium(III). The two metal centers are connected through bis(bidentate) oxalate. Very weak antiferromagnetic interactions between the chromium(III) ions occur in 1. The values of the protonation constants of the imidazole and pyridyl fragments of pyim as well as the acidity constant of the coordinated pyim in [Cr(pyim)(C2O4)2]? are determined for the first time by potentiometry and UV–Vis spectroscopy in aqueous solution (25?°C and 0.15 M NaNO3 as ionic strength).  相似文献   

12.
High-valent tetraalkylcuprates(iii ) and -argentates(iii ) are key intermediates of copper- and silver-mediated C−C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3] complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe] anion upon collisional activation of the cuprate(iii ) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2], consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2] from the argentate(iii ) species. Remarkably, the different C−C coupling propensities of the two [RMiii Me3] complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3]. Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.  相似文献   

13.
The reaction of Ru3(CO)12 and [Ir(CO)4]- (as [PPh4]+ or [N(PPh3)2]+ salts) yields the anion [Ru3Ir2(CO)14]2- (1) which has been found to derive from the intermediate [Ru3Ir(CO)13]- anion. Treatment of (1) with acids gives the conjugated hydrido species [Ru3Ir2(CO)14H]- (2). The two anions were characterized by single-crystal X-ray diffraction of their [PPh4]+ salts. [PPh4]2[Ru3Ir2(CO)14]: space group C2/c, Z=4, a=22.121(5) Å, b=10.546(5) Å, c=25.931(5) Å, =103.870(5)°, R=0.052 and Rw=0.130 for 3128 independent reflections with I>2(I ). [PPh4][Ru3Ir2(CO)14H]: space group P21/c, Z=8, a=22.833(5) Å, b=13.893(5) Å, c=25.810(5) Å, =92.650(5)°, R=0.070 and Rw=0.150 for 12141 independent reflections with I>2(I). Both anions 1 and 2 have a trigonal bipyramidal metal frame. There are two independent anions in the asymmetric unit of 2 differing in their ligand stereochemistry.  相似文献   

14.
The vibrational properties of the diphenylbismuth(III) chloride compounds (C6H5)2BiCl and [N(CH3)4]+[(C6H5)2BiCl2] have been investigated. A comprehensive assignment of the fundamental modes in the measured Fourier-transform Raman and infrared spectra has been carried out. Normal coordinate calculations of these compounds based on new X-ray crystal structure data have been performed to identify the BiCl stretching and bending vibrations of both compounds. For [N(CH3)4]+[(C6H5)2BiCl2] in the solid state, the νs(BiCl2) and νas(BiCl2) occur at 215 cm (Raman) and 237 cm (Raman), respectively, in good agreement with the calculated wavenumbers. The force constant calculation yields a BiCl stretching force constant of 0.89 × 102 N m−1.  相似文献   

15.
The new tetranuclear phosphido-bridged compound [Hg{(μ-PEt2)Cr(CO)5}3] has been obtained by reaction of [Hg{(μ-PEt2)Cr(CO)5}2] with Li[Cr(CO)5PEt2]. The coordination of [Cr(CO)5PEt2] results in an unprecedented increase in J(Hg,P), whereas an increase in the number of phosphorus ligands coordinated to mercury is usually accompanied by a decrease in the magnitude of J(Hg,P). This anomaly is interpreted in terms of CrHg donor acceptor interactions.  相似文献   

16.
Reactions of a solution of AgNO3 in aqueous methanol with solutions of 1,4-diallylpiperazine (acidified with HNO3 to pH = 4) and 1-allyloxybenzotriazole in ethanol gave the crystalline silver(I) π-complexes [Ag2(C4H8N2(C3H5)2(H+)2)(H2O)2(NO3)2](NO3)2 (I) and [Ag(C6H4N3(OC3H5)(NO3))] (II). Their crystal structures were determined by X-ray diffraction. Crystals of complexes I and II are monoclinic, space group P21/c; for I: a = 7.053(3)Å, b = 9.389(3)Å, c = 15.488(4)Å, β = 91.60°, V = 1025.3(6)Å3, Z = 4; for II: a = 10.650(4)Å, b = 15.062(5)Å, c = 7.412(4)Å, β = 104.20(3)°, V = 1152.6(8)Å3, Z = 4. In both structures, the organic components act as bidentate ligands forming with AgNO3 34- and 14-membered topological rings, respectively. In complex I, the nearly tetrahedral environment of the Ag(I) atom is made up of the olefinic C=C bond, the O atoms of the nitrate anions, and the water molecule. 1-Allyloxybenzotriazole in structure II causes the deformation of the coordination polyhedron of Ag into a trigonal pyramid via inclusion of the ligand N atom in its coordination sphere. The topological units of the complexes form infinite polymer layers linked by anionic NO 3 ? bridges. In structure I, these layers are united through a system of hydrogen bonds into a three-dimensional framework.  相似文献   

17.
While alkyl-substituted siloxanes are widely known, virtually nothing is known about perfluoroalkyl siloxanes and their congener species, the silanols and silanolates. We recently reported on the tris(pentafluoroethyl)silanide ion, [Si(C2F5)3], which features Lewis amphoteric character deriving from the pentafluoroethyl substituents and their strong electron-withdrawing properties. Transferring this knowledge, we investigated the Lewis amphoteric behavior of the tris(pentafluoroethyl)silanolate, [Si(C2F5)3O]. In order to examine such Lewis amphoteric behavior, we first developed a strategy for the synthesis of the corresponding silanol Si(C2F5)3OH, which readily condenses at room temperature to the hexakis(pentafluoroethyl)disiloxane, (C2F5)3SiOSi(C2F5)3. Deprotonation of Si(C2F5)3OH employing a sterically demanding phosphazene base allows the characterization of the first example of a dimeric triorganosilanolate: the dianionic hexakis(pentafluoroethyl)disilanolate, [{Si(C2F5)3O}2]2−, implies Lewis amphoteric character of the monomeric [Si(C2F5)3O] anion.  相似文献   

18.
The new chalcogenido ortho indates(III) K5[InSe4] and K12[InS4]2(S) were synthesized from melts of the elements (Se) [or with S/In2S3 as chalcogen source] at maximum temperatures of 700/800 °C. The two potassium salts, which were characterized by means of X-ray single crystal structure analysis, contain isolated tetrahedral ortho anions [InQ4]5–. K5[InSe4] crystallizes in a new structure type [monoclinic, space group C2/c, a = 2014.2(2), b = 1553.1(2), c = 1661.1(2) pm, β = 94.716(2)°, Z = 16, R1 = 0.0317]. The complex structure contains two crystallographically different [InSe4]5– tetrahedra [d(In ··· Se) = 254.3–263.6 pm], which are arranged into 44 [In(1), A ] and 32.4.3.4 [In(2), B ] nets. These nets are |: ABA ' B ':| stacked along the a axis. The 11 crystallographically independent K+ ions are coordinated by four (1×), five (3×) and six (7×) selenido anions [d(K–Se) = 309–415 pm]. The crystal structure and the calculated electronic structure of the pure ortho indate K5[InSe4] are compared with the known “double salts” K9[InSe4]2(Se) and K9[InSe4](Se2)(Se), which exhibit selenide (and diselenide) anions in addition to the ortho metallate. Similarly, the new sulfido indate K11[InS4]2(S) contains sulfide anions besides the indate tetrahedra. In the chiral structure (K6[InTe4](Cl)-type, hexagonal, space group P63mc, a = 1026.22(10), c = 752.34(7) pm, Z = 2, R1 = 0.0332) layers of similarly oriented [InS4] tetrahedra [d(In ··· Se) = 246.6/248.1 pm] are hexagonally |: AB :| stacked along one threefold axis. The additional sulfide anions are centered in K+ octahedra. In contrast to the isotypic chloride, only every second polyhedron within the columns of face-sharing K6 octahedra is statistically occupied by a sulfide ion. Both of the two different K positions exhibit a sixfold coordination by sulfide anions, with K–S distances between 307.1 and 382.1 pm. In the two title compounds, each of the [InQ4] tetrahedra is overall enclosed by 18 potassium cations. The crystal chemistry of the new indates is discussed and compared with that of the (yet comparatively low number) of alkali chalcogenido metallates(III) of Fe, Al and Ga containing isolated metallate tetrahedra.  相似文献   

19.
Developments in the chemistry of weakly coordinating anions enabled isolation of numerous unique metal complexes with unusual ligands. An important example is the family of metal-Fe(CO)5 complexes. In the current paper we present synthesis and thorough characterization of the first truly homoleptic {Cu[Fe(CO)5]2}+ cation obtained as a salt of weakly coordinating [Al(ORF)4] (RF=C(CF3)3) anion. TGA/DSC/MS study show that its decomposition becomes noticeable only above 110 °C, thus it can be stored as powder in air-free conditions for months. The crystal structure of {Cu[Fe(CO)5]2}+ shows strong asymmetry of the cation and very short Cu-CO bonds in comparison to analogous {M[Fe(CO)5]2}+ where M=Ag or Au. Characterization is complemented with analysis of vibrational spectra and extensive DFT calculations which give insight into the energetics of Cu+-Fe(CO)5 systems. Our results show that {Cu[Fe(CO)5]2}+ is homoleptic only as salt of [Al(ORF)4]. Furthermore, in the presence of additional, even weakly basic ligands, the Cu+-Fe(CO)5 bond strength decreases what may contribute to the complex's instability in liquid SO2 or in the presence of [SbF6]. These conclusions point at the key role of selection of proper anion and solvent in stabilization of these types of complexes.  相似文献   

20.
Abstract

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene have been described recently1. Unlike their simple ferrocene analogues, these complexes have further ligating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η5-coordination. We now describe the first examples of coordination compounds of the triphospha-ferrocene [Fe(η5-C5Me5) (η5-C2 tBu2P3]. In the ruthenium complex [Fe(η5-C5Me5)(η5-C2 tBu2P3) Ru3(CO)9] 2 two adjacent phosphorus atoms of the η5-C2 tBu2P3 ring are interlinked by a ruthenium carbonyl cluster in which all three ruthenium atoms interact with the phosphorus atoms. The tetrametallic nickel complex [Fe(η5-C5Me5)(η5-C2 tBu2P3)Ni(CO)2]2 3 represents the first example of intermolecular interlinkage of two phospha-ferrocene systems by two metal centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号