首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increasing number of biocatalytic oxidation reactions rely on H2O2 as a clean oxidant. The poor robustness of most enzymes towards H2O2, however, necessitates more efficient systems for in situ H2O2 generation. In analogy to the well‐known formate dehydrogenase to promote NADH‐dependent reactions, we here propose employing formate oxidase (FOx) to promote H2O2‐dependent enzymatic oxidation reactions. Even under non‐optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.  相似文献   

2.
Copper complexes bearing readily available ligand systems catalyzed the oxidation of alkanes with H2O2 as the oxidant with high efficiency in remarkable yields (50–60 %). The reactions proceeded with unprecedented selectivity to give alkyl hydroperoxides as the major products. Detailed scrutiny of the reaction mechanism suggests the involvement of C‐centered and O‐centered radicals generated in a Fenton‐like fashion.  相似文献   

3.
Hypervalent FeV=O species are implicated in a multitude of oxidative reactions of organic substrates, as well as in catalytic water oxidation, a reaction crucial for artificial photosynthesis. Spectroscopically characterized FeV species are exceedingly rare and, so far, were produced by the oxidation of Fe complexes with peroxy acids or H2O2: reactions that entail breaking of the O?O bond to form a FeV=O fragment. The key FeV=O species proposed to initiate the O?O bond formation in water oxidation reactions remained undetected, presumably due to their high reactivity. Here, we achieved freeze quench trapping of six coordinated [FeV=O,(OH)(Pytacn)]2+ (Pytacn=1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane) ( 2 ) generated during catalytic water oxidation. X‐ray absorption spectroscopy (XAS) confirmed the FeV oxidation state and the presence of a FeV=O bond at ≈1.60 Å. Combined EPR and DFT methods indicate that 2 contains a S=3/2 FeV center. 2 is the first spectroscopically characterized high spin oxo‐FeV complex and constitutes a paradigmatic example of the FeV=O(OH) species proposed to be responsible for catalytic water oxidation reactions.  相似文献   

4.
The absolute yields of gaseous oxyfluorides SOF2, SO2F2, and SOF4 from negative, point-plane corona discharges in pressurized gas mixtures of SF6 with O2 and H2O enriched with18O2 and H2 18O have been measured using a gas chromatograph-mass spectrometer. The predominant SF6 oxidation mechanisms have been revealed from a determination of the relative18O and16O isotope content of the observed oxyfluoride by-product. The results are consistent with previously proposed production mechanisms and indicate that SOF2 and SO2F2 derive oxygen predominantly from H2O and O2, respectively, in slow, gas-phase reactions involving SF4, SF3, and SF2 that occur outside of the discharge region. The species SOF4 derives oxygen from both H2O and O2 through fast reactions in the active discharge region involving free radicals or ions such as OH and O, with SF5 and SF4.  相似文献   

5.
The oxidation rates of nanomolar levels of Fe(II) in seawater (salinity S = 36.2) by mixtures of O2 and H2O2 has been measured as a function of pH (5.8–8.4) and temperature (3–35∘C). A competition exists for the oxidation of Fe(II) in the presence of both O2 (μ mol⋅L−1 levels) and H2O2 (nmol⋅L−1 levels). A kinetic model has been applied to explain the experimental results that considers the interactions of Fe(II) with the major ions in seawater. In the presence of both oxidants, the hydrolyzed Fe(II) species dominate the Fe(II) oxidation process between pH 6 and 8.5. Over pH range 6.2–7.9, the FeOH+ species are the most active, whereas above pH 7.9, the Fe(OH)02 species are the most active at the levels of CO2−3 concentration present in seawater. The predicted Fe(II) oxidation rate at [Fe(II)]0 = 30nmol⋅L−1 and pH = 8.17 in the oxygen-saturated seawater with [H2O2]0 = 50nmol⋅L−1 (log 10 k = −2.24s−1) is in excellent agreement with the experimental value of log 10 k = −2.29s−1 ([H2O2]0 = 55nmol⋅L−1, pH = 8).  相似文献   

6.
As a H2O2 generator, a 2e oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2S4 towards the 2e reduction reaction, N atoms are doped in its structure and replace S2−. The result implies that this weakens the interaction between NiCo2S4 and OOH*, suppresses O−O bond breaking and enhances H2O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn−O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.  相似文献   

7.
《中国化学》2017,35(9):1349-1365
Transition‐metal catalyzed oxidation reactions are central components of organic chemistry. On behalf of green and sustainable chemistry, molecular oxygen (O2) has been considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characters, and therefore offers attractive academic and industrial prospects. In recent years, some powerful organic oxidation methods have been continuously developed. Among them, the use of molecular oxygen (O2) as a green and sustainable oxidant has attracted considerable attentions. However, the development of new transition metal‐catalyzed protocols using O2 as an ideal oxidant is highly desirable but very challenging because of the low standard electrode potential of O2 to reoxidize the transition‐metal catalysts. In this Account, we highlight some of our progress toward the use of transition‐metal catalyzed aerobic oxidation reactions. Through the careful selection of ligand and the acidic additives, we have successfully realized the reoxidation of Cu, Pd, Mn, Fe, Ru, Rh, and bimetallic catalysts under O2 or air atmosphere (1 atm) for the oxidative coupling, oxygenation reactions, oxidative C‐H/C‐C bond cleavage, oxidative annulation, and olefins difunctionalization reactions. Most of the reactions can tolerate a range of functional groups. These methods provide new strategies for the green synthesis of alkynes, (α ‐keto)amides/esters, ketones/diones, O/N‐heterocycles, β ‐azido alcohols, and nitriles. The high efficiency, low cost, and simple operation under air make these methodologies very attractive and practical. We will also discuss the mechanisms of these reactions which might be useful to promote the new type of aerobic oxidative reaction design.  相似文献   

8.
Redox metalloenzymes achieve very selective oxidation reactions under mild conditions using O2 or H2O2 as oxidants and release harmless side-products like water. Their oxidation selectivity is intrinsically linked to the control of the oxidizing species generated during the catalytic cycle. To do so, a second coordination sphere is used in order to create a pull effect during the activation of O2 or H2O2, thus ensuring a heterolytic O–O bond cleavage. Herein, we report the synthesis and study of a new non-heme FeII complex bearing a pentaazadentate first coordination sphere and a pendant phenol group. Its reaction with H2O2 generates the classical FeIIIOOH species at high H2O2 loading. But at low H2O2 concentrations, an FeIVO species is generated instead. The formation of the latter is directly related to the presence of the 2nd sphere phenol group. Kinetic, variable temperature and labelling studies support the involvement of the attached phenol as a second coordination sphere moiety (weak acid) during H2O2 activation. Our results suggest a direct FeII → FeIVO conversion directed by the 2nd sphere phenol via the protonation of the distal O atom of the FeII/H2O2 adduct leading to a heterolytic O–O bond cleavage.

A new FeII complex with a phenol group attached as a second coordination sphere moiety activates H2O2 to yield FeIVO following a mechanism reminiscent of peroxidase enzymes.  相似文献   

9.
H2O2 is a versatile and environmentally friendly chemical involved in water treatment, such as advanced oxidation processes. Anthraquinone oxidation is widely used for large-scale production of H2O2, which requires significant energy input and periodic replacement of the carrier molecule. H2O2 production should be customized considering the specific usage scenario. Electrochemical synthesis of H2O2 can be adopted as alternatives to traditional method, which avoids concentration, transportation, and storage processes. Herein, we identified Bi2WO6:Mo as a low-cost and high-selectivity choice from a series of Bi-based oxides for H2O2 generation via two-electron water oxidation reaction. It can continuously provide H2O2 for in situ degradation of persistent pollutants in aqueous solution. Clean energy from H2 can also be produced at the cathode. This kind of water splitting producing sustainable resources of H2O2 and H2 is an advance in environmental treatment and energy science.  相似文献   

10.
In the present work, high temperature oxidation of HP40 alloy was carried out at 1050 °C under H2–H2O and air atmospheres; the influence of atmosphere on surface morphology and composition was studied. Octahedral crystals with considerable spalled regions are present on the surface of alloy oxidized under air, the oxide scale composes of MnCr2O4, Cr2O3 and (Fe, Ni)Cr2O4 and spalled regions exhibit base alloy and SiO2‐rich regions. The surface of alloy oxidized under H2–H2O is fully covered by small granular crystals and blade‐type structures without spallation, and the oxide scale composes of MnCr2O4 and Cr2O3. Moreover, X‐ray photoelectron spectroscopy analysis shows considerable difference in chemical valence states of Mn, Cr and O elements on both alloy surfaces, and hydroxyl compounds exist on the alloy oxidized under H2–H2O atmosphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The layered acid solids of formula H3OUO2XO4· 3 H2O (X = As, P) intercalate aniline and benzidine arylamines, by protonation of the guest molecules. The intercalates maintain the original laminar structure.The insertion of aniline and benzidinein the metal derivativesM(UO2XO4)2·n H2O (M = Cu, VO, Fe) requires rather drastic conditions. Near and medium infrared spectra of intercalates in which M = VO2+ and Cu2+, indicate that the polymerization and/or oxidation of sorbed amines occurs; however, the guest-host reactions for Fe2+-derivatives are of the acid-base type.  相似文献   

12.
《Polyhedron》2002,21(12-13):1299-1304
The crystal structure of a trinuclear iron monoiodoacetate complex was determined. Although it has been incorrectly characterized as [Fe3O(O2CCH2I)6(H2O)3], the correct chemical formula turned out to be [Fe(III)2Fe(II)O(O2CCH2I)6(H2O)3]-[Fe(III)3O(O2CCH2I)6(H2O)3]I (1). The two kinds of Fe3O molecules (Fe(III)2Fe(II)O and Fe(III)3O) are crystallographically indistinguishable. All the Fe atoms are crystallographically equivalent because of a crystallographic threefold symmetry. Heat capacities of 1 seem to exhibit no thermal anomaly in the temperature range 5.5–309 K, although the valence detrapping phenomenon has been observed in this temperature range. This fact indicates that the valence-detrapping phenomenon in 1 occurs without any phase transition, leading 1 to a glassy state, probably because the crystal of 1 is just like a solid solution of distorted mixed-valence Fe(III)2Fe(II)O molecules and permanently undistorted Fe(III)3O molecules which may act as an inhibitor for a cooperative valence-trapping.  相似文献   

13.
Flow reactor experiments were performed over wide ranges of pressure (0.5–14.0 atm) and temperature (750–1100 K) to study H2/O2 and CO/H2O/O2 kinetics in the presence of trace quantities of NO and NO2. The promoting and inhibiting effects of NO reported previously at near atmospheric pressures extend throughout the range of pressures explored in the present study. At conditions where the recombination reaction H + O2 (+M) = HO2 (+M) is favored over the competing branching reaction, low concentrations of NO promote H2 and CO oxidation by converting HO2 to OH. In high concentrations, NO can also inhibit oxidative processes by catalyzing the recombination of radicals. The experimental data show that the overall effects of NO addition on fuel consumption and conversion of NO to NO2 depend strongly on pressure and stoichiometry. The addition of NO2 was also found to promote H2 and CO oxidation but only at conditions where the reacting mixture first promoted the conversion of NO2 to NO. Experimentally measured profiles of H2, CO, CO2, NO, NO2, O2, H2O, and temperature were used to constrain the development of a detailed kinetic mechanism consistent with the previously studied H2/O2, CO/H2O/O2, H2/NO2, and CO/H2O/N2O systems. Model predictions generated using the reaction mechanism presented here are in good agreement with the experimental data over the entire range of conditions explored. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 705–724, 1999  相似文献   

14.
Oxidative cleavage of the Csp3−O bond in 1-arylisochromans with stoichiometric oxidants, such as CrO3/H2SO4, has been practiced for decades in synthetic chemistry. Herein, we report that a structurally well-defined FeII–pyridyl(bis-imidazolidine) catalyst promotes the aerobic oxygenation of 1-arylisochromans, affording highly selectively 2-(hydroxyethyl)benzophenones, compounds of potential for neuroprotective agents. Key intermediates have been isolated, indicating that the reaction proceeds through dehydrogenative oxygenation of the isochromans at the 1-position, Csp3−O bond cleavage at the iron centre and hydrogenolysis of the resulting Fe−O bond with the H2 generated from the dehydrogenation step. In the absence of H2 but under iron catalysis, the peroxide intermediate is converted into an unexpected ketal compound, which transfers into a 2-(hydroxyethyl)benzophenone when both O2 and H2 are admitted. The unique ability of the iron catalyst for oxygenation and hydrogenation in the same catalytic process under mild conditions allows for the stepwise preparation of a variety of isolable oxygenated products on a preparative scale, circumventing the need for using wasteful and/or toxic oxidants.  相似文献   

15.
Electrospun hemoglobin (Hb) microbelts were used as a novel precursor to produce a new class of carbon nanofibers (Hb‐CNFs) containing Fe species (Fe2O3 and/or Fe‐N4 moiety). The Hb‐CNFs modified glassy carbon electrode (Hb‐CNFs/GCE) exhibits significant oxidation/reduction towards H2O2. The observed H2O2 oxidation/reduction starting at ca. +0.26 V and +0.15 V (vs. Ag/AgCl) are significantly lower than the values observed at other CNFs modified GCE. The Hb‐CNFs/GCE was also applied to the amperometric detection of H2O2 and the results showed fast response, high sensitivity, excellent reproducibility, good selectivity, and wide dynamic range with good limit of detection.  相似文献   

16.
During the etching of AZ 1350 photoresist in O2 and O2/CF4 discharges, ground-state concentrations of atoms (O, F, and H), and small radicals (OH, HO2, RO2) were measured in the discharge afterglow by EPR spectroscopy. In the case of CF4/O2 discharges, the dependence of O and F atom concentrations on the etch time reflects both surfäce oxidation and fluorination reactions in accordance with existing etch models. In the case of high-rate resist etching in pure O2 discharges, high concentrations of product radicals (H, OH and HO2) were detected and compared with resist free O2/H2O discharges. Kinetic modeling of the afterglow reactions reveals that the mean lifetime and, accordingly, the diffusion length of the etchant species O(3P) is drastically reduced in rapid reactions with OH and HO2. The results are used to simulate both etch homogeneity and the loading effect in a simple etch model.  相似文献   

17.
Transport of α? Fe2O3 with HCl via monomeric iron(III) chloride according to Fe2O3(s) + 6 HCl(g) = 2FeCl3(g) + 3 H2O(g); T2 → T1 between T2 = 1000°C and T1 = 800°C in the region of diffusion produced crystals which contained, in dependence of total pressure, different amounts of divalent iron. By addition of oxygen to the transport gas stoichiometric crystals of hematite by otherwise unchanged conditions were obtained. The necessary amount of oxygen was calculated from the phase diagram Fe? O, and an explanation of the gas phase reactions is given. Dependence of the transport rate of hematite on total pressure in the region of diffusion (0.009 to 6 atm) is reported.  相似文献   

18.
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV(O)(CH3CN)]2+ ( 2 ; cyclam=1,4,8,11‐tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII]2+ with aqueous hydrogen peroxide (H2O2) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo‐ and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII]2+ and H2O2. In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high‐yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.  相似文献   

19.
Non‐aqueous Li–O2 batteries are promising for next‐generation energy storage. New battery chemistries based on LiOH, rather than Li2O2, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru‐catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e oxygen reduction reaction, the H in LiOH coming solely from added H2O and the O from both O2 and H2O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2O2, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long‐lived battery. An optimized metal‐catalyst–electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.  相似文献   

20.
Direct electron transfer between redox enzymes and electrodes is the basis for the third generation biosensors. We established direct electron transfer between quinohemoprotein alcohol dehydrogenase (PQQ-ADH) and modified carbon black (CBs) electrodes. Furthermore, for the first time, this phenomenon was observed for pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (PQQ-GDH). Reagentless enzyme biosensors suitable for the determination of ethanol, glucose and sensors for hydrogen peroxide were designed using CB electrodes and screen-printing technique. Aiming to create an optimal transducing material for biosensors, a set of CB batches was synthesized using the matrix of Plackett-Burman experimental design. Depending on the obtained surface functional groups as well as the nano-scale carbon structures in CBs batches, the maximal direct electron transfer current of glucose and ethanol biosensors can vary from 20 to 300 nA and from 30 to 6300 nA for glucose and ethanol, respectively. Using modified CB electrodes, an electrocatalytic oxidation of H2O2 takes place at more negative potentials (0.1-0.4 V versus Ag/AgCl). Moreover, H2O2 oxidation efficiency depends on the amount and morphology of fine fraction in the modified CBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号