首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Numerous applications of metal‐mediated base pairs (metallo‐base‐pairs) to nucleic acid based nanodevices and genetic code expansion have been extensively studied. Many of these metallo‐base‐pairs are formed in DNA and RNA duplexes containing Watson–Crick base pairs. Recently, a crystal structure of a metal–DNA nanowire with an uninterrupted one‐dimensional silver array was reported. We now report the crystal structure of a novel DNA helical wire containing HgII‐mediated T:T and T:G base pairs and water‐mediated C:C base pairs. The Hg‐DNA wire does not contain any Watson–Crick base pairs. Crystals of the Hg‐DNA wire, which is the first DNA wire structure driven by HgII ions, were obtained by mixing the short oligonucleotide d(TTTGC) and HgII ions. This study demonstrates the potential of metallo‐DNA to form various structural components that can be used for functional nanodevices.  相似文献   

2.
Isolated and consecutive heterochiral α-dC– base pairs have been incorporated into 12-mer oligonucleotide duplexes at various positions, thereby replacing Watson–Crick pairs. To this end, a new synthesis of the α-d anomer of dC has been developed, and oligonucleotides containing α-dC residues have been synthesized. Silver-mediated base pairs were formed upon the addition of silver ions. Furthermore, we have established that heterochiral α-dC–dC base pairs can approach the stability of a Watson–Crick pair, whereas homochiral dC–dC pairs are significantly less stable. A positional change of the silver-mediated base pairs affects the duplex stability and reveals the nearest-neighbor influence. When the number of silver ions was equivalent to the number of duplex base pairs (12), non-melting silver-rich complexes were formed. Structural changes have been supported by circular dichroism (CD) spectra, which showed that the B-DNA structure was maintained whilst the silver ion concentration was low. At high silver ion concentration, silver-rich complexes displaying different CD spectra were formed.  相似文献   

3.
Matsuda and coworkers demonstrated that imidazopyridopyrimidine nucelobases (N N , O O , N O , tO O , and O N ) can mimic Watson–Crick nucleobase in forming H-bonds in DNA double helix. In the present study, we address the question about the strengths of the H-bonds in imidazopyridopyrimidine base pairs compared to those in Watson–Crick ones by focusing particularly on the nature of these interactions. Optimized structures of imidazopyridopyrimidine, imidazopyridopyrimidine–Watson–Crick, and Watson–Crick base pairs are obtained at the DFTB3LYP/6-311++G (d,p). The nature and strength of the intramolecular H-bonds in these base pairs have been investigated based on natural bond orbital (NBO method) to consider the effect of charge transfer, “atoms-in-molecules” (AIM) topological parameters, and decomposition of the interaction energies using the energy decomposition analysis (EDA). These investigations imply that N N –O O and N O O N can form base pairs with four H-bonds (most stable than those of Watson–Crick base pairs) when they incorporated into DNA double helix. Furthermore, it can be deduced that O N and N N nucleobases form energetically more favorable pairs with adenine and guanine than the normal Watson–Crick counter parts. These results can be helpful for the stabilization and regulation of a variety of new base-pairing motif of DNA structures.  相似文献   

4.
Structural characteristics of Watson–Crick hydrogen-bonded base pairs are displayed by methylene-bridged base pairs of type A . The shown superposition of the X-ray structure obtained for the base pair A (Rib1=Et; Rib2=Me) over that of a C–G base pair illustrates that A occupies an area similar to that occupied by a traditional Watson–Crick hydrogen-bonded base pair. Temperature-dependent 1H NMR studies indicate that the energy barrier for rotation along its CH2 bridge is about 10 kcal mol−1, and that it exists predominantly in one conformer at −70°C.  相似文献   

5.
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G?C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[?H]?C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G?C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*?C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA.  相似文献   

6.
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson–Crick hybridization. Such DNA–protein conjugates, with their combined properties, have a broad range of applications, such as in high‐performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA–protein conjugates as well as recent advances in their applications. For example, DNA–protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light‐harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro‐ and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis.  相似文献   

7.
In the present density functional theory study, we have compared intrinsic properties of non-natural nucleobases (acA, acG, acC, and acT nucleobases) such as proton affinities, gas phase acidities, tautomerization, and hydrogen-bonding properties with those in normal Watson–Crick nucleobases (A, G, C, T nucleobases). The hydrogen-bonding interactions in non-natural and Watson–Crick base pairs were studied at B3LYP/6-311++G (d,p) level regarding their geometries, energies, and topological features of the electron density. The quantum theory of atoms-in-molecule (QTAIM) and natural bond orbital (NBO) analyses were employed to elucidate the interaction characteristics in base pairs. The electron density ρ(r) as well as its Laplacian $ \nabla^{2} $ ρ(r) at the hydrogen bond critical point predicted by QTAIM is strongly correlated with hydrogen bond structural parameter and the second-order perturbation energies in NBO scheme. Our results show that most of hydrogen bonds in normal Watson–Crick and non-natural base pairs must be considered as electrostatic interactions. Results of calculations revealed that energetic values of hydrogen bonds in TA base pair are more than those in ac Tac A base pair, while values of hydrogen bonds in CG base pair and ac Cac G base pair are almost the same. These results confirmed stability order of stabilization energies of these base pairs.  相似文献   

8.
The use of DNA as a molecular wire in nanoscale electronic architectures would greatly benefit from its capability of sequence-specific self-assembly. Although single electrons and positive charges have been shown to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides imposes a serious obstacle. Exchanging some or all of the Watson–Crick base pairs in DNA by metal complexes may solve this problem and evolve DNA-like materials with superior conductivity for future nano-electronic applications. The so-called metal–base pairs are formed from suitable transition metal ions and ligand-like nucleosides which are introduced into both of the two pairing strands by automated DNA synthesis. This review illustrates the basic concepts of metal–base pairing and highlights recent developments in the field.  相似文献   

9.
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson–Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X‐ray structures of protein–DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson–Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X‐ray crystallography due to ambiguous electron density and by solution‐state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution‐state observation of a Hoogsteen (G–C+) bp in a DNA:protein complex under solution conditions with specific application to DNA‐bound TATA‐box binding protein. These results support a previous assignment of a G–C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.  相似文献   

10.
The physical and chemical factors that allow DNA to perform its functions in the cell have been studied for several decades. Recent advances in the synthesis and manipulation of DNA have allowed this field to move ahead especially rapidly during the past fifteen years. One of the most common chemical approaches to the study of interactions involving DNA has been the use of DNA base analogues in which functional groups are added, deleted, blocked, or rearranged. Here we describe a different strategy, in which the polar natural DNA bases are replaced by nonpolar aromatic molecules of the same size and shape. This allows the evaluation of polar interactions (such as hydrogen bonding) with little or no interference from steric effects. We have used these nonpolar nucleoside isosteres as probes of noncovalent interactions such as DNA base pairing and protein - DNA recognition. We have found that, while base-pairing selectivity does depend on Watson - Crick hydrogen bonding in the natural pairs, it is possible to design new bases that pair selectively and stably in the absence of hydrogen bonds. In addition, studies have been carried out with DNA polymerase enzymes to investigate the importance of Watson - Crick hydrogen bonding in enzymatic DNA replication. Surprisingly, this hydrogen bonding is not necessary for efficient enzymatic synthesis of a base pair, and significant levels of selectivity can arise from steric effects alone. These results may have significant impact both on the study of basic biomolecular interactions and in the design of new, functionally active biomolecules.  相似文献   

11.
Reverse Watson–Crick DNA with parallel‐strand orientation (ps DNA) has been constructed. Pyrrolo‐dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3‐d]pyrimidine base have been incorporated in 12‐ and 25‐mer oligonucleotide duplexes and utilized as silver‐ion binding sites. Thermal‐stability studies on the parallel DNA strands demonstrated extremely strong silver‐ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single 2pyPyrdC–2pyPyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver‐ion base pair that aligns 7‐deazapurine bases head‐to‐tail instead of head‐to‐head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson–Crick base pairs stabilized by a dinuclear silver‐mediated PyrdC pair.  相似文献   

12.
The Watson–Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson–Crick and purine–purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2′-deoxyguanosine, its tripropargylamine derivative, and 2′-deoxyisoguanosine were synthesized. Duplex stability decreased if single modified purine–purine base pairs were inserted, but increased if pyrene residues were introduced by click chemistry. A growing number of consecutive 5-aza-7-deazaguanine–isoguanine base pairs led to strong stepwise duplex stabilization, a phenomenon not observed for the guanine–isoguanine base pair. Spacious residues are well accommodated in the large groove of purine–purine DNA tracts. Changes to the global helical structure monitored by circular dichroism spectroscopy show the impact of functionalization to the global double-helix structure. This study explores new areas of molecular recognition realized by purine base pairs that are complementary in hydrogen bonding, but not in size, relative to canonical pairs.  相似文献   

13.
Excited‐state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double‐stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson–Crick hydrogen bonds. A comparison of single‐ and double‐stranded DNA showed that the reactive charge‐transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson–Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge‐transfer states.  相似文献   

14.
We describe in this Minireview the synthesis, properties, and applications of artificial genetic sets built from base pairs that are larger than the natural Watson–Crick architecture. Such designed systems are being explored by several research groups to investigate basic chemical questions regarding the functions of the genetic information storage systems and thus of the origin and evolution of life. For example, is the terrestrial DNA structure the only viable one, or can other architectures function as well? Working outside the constraints of purine–pyrimidine geometry provides more chemical flexibility in design, and the added size confers useful properties such as high binding affinity and helix stability as well as fluorescence. These features are useful for the investigation of fundamental biochemical questions as well as in the development of new biotechnological, biomedical, and nanostructural tools and methods.  相似文献   

15.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

16.
The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed “M‐fC” and “I‐fC”), which are chemical labeling adducts of the epigenetic base 5‐formylcytosine, can induce C‐to‐T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase‐host–guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M‐fC and I‐fC base pair with dA/dATP, but not with dG, in a Watson–Crick geometry. This study reveals that the formation of the Watson–Crick geometry, which may be enabled by the A‐rule, is important for the recognition of unnatural cytosines.  相似文献   

17.
The suggestion that phosphorus/arsenic replacement in DNA can play a role in living things has generated great controversy (Wolfe‐Simon et al., Science 2011, 332, 1163). Examined here theoretically are substitution effects on Watson–Crick base pairing and base stacking patterns in realistic DNA subunits. Using duplex DNA models deoxyguanylyl‐3′,5′‐deoxycytidine ([dGpdC]2) and deoxycytidyly‐3′,5′‐deoxyguanosine ([dCpdG)]2), this research reveals that the geometric variations caused by the As/P exchange are small and are limited to the phosphate/arsenate groups. As/P replacement leads to alterations of ~0.15 Å in P/As? O bond lengths and less than 1.5° variations in O? P/As? O angles. The Watson–Crick base pairing and base stacking patterns are independent of the As/P replacement. The vertical electron detachment energies are also largely unaffected. However, the electron capture ability of the DNA units is improved by the As substitution. The arsenate is found to be the main electron acceptor in As‐DNA. The results are relevant to the possible existence of viable As‐DNAs, at least in the guanine and cytosine (GC)‐related B‐form DNA. © 2012 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

18.
19.
The structures and proton‐coupled behavior of adenine–thymine (A‐T) and a modified base pair containing a thymine isostere, adenine–difluorotoluene (A‐F), are studied in different solvents by dispersion‐corrected density functional theory. The stability of the canonical Watson–Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A‐F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH‐based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH‐controlled molecular switch, which can be incorporated in a natural DNA tract.  相似文献   

20.
RNA contains different secondary structural motifs like pseudo-helices, hairpin loops, internal loops, etc. in addition to anti-parallel double helices and random coils. The secondary structures are mainly stabilized by base-pairing and stacking interactions between the planar aromatic bases. The hydrogen bonding strength and geometries of base pairs are characterized by six intra-base pair parameters. Similarly, stacking can be represented by six local doublet parameters. These dinucleotide step parameters can describe the quality of stacking between Watson–Crick base pairs very effectively. However, it is quite difficult to understand the stacking pattern for dinucleotides consisting of non canonical base pairs from these parameters. Stacking interaction is a manifestation of the interaction between two aromatic bases or base pairs and thus can be estimated best by the overlap area between the planar aromatic moieties. We have calculated base pair overlap between two consecutive base pairs as the buried van der Waals surface between them. In general, overlap values show normal distribution for the Watson–Crick base pairs in most double helices within a range from 45 to 50 Å2 irrespective of base sequence. The dinucleotide steps with non-canonical base pairs also are seen to have high overlap value, although their twist and few other parameters are rather unusual. We have analyzed hairpin loops of different length, bulges within double helical structures and pseudo-continuous helices using our algorithm. The overlap area analyses indicate good stacking between few looped out bases especially in GNRA tetraloop, which was difficult to quantitatively characterise from analysis of the base pair or dinucleotide step parameters. This parameter is also seen to be capable to distinguish pseudo-continuous helices from kinked helix junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号