Excited-state potential energy surfaces of adenine, protonated adenine, and their N9-methylated analogs are explored by means of a complete active space (CAS) and time-dependent density functional theory (TD-DFT) study to understand the dynamics associated with internal conversion. After photoexcitation of the ground-state molecules to the S(1) state, the nuclear motions that are responsible for taking the wavepacket out of the Franck-Condon region are either an H--N9/C--N9 stretch or a ring-puckering motion that leads to pyramidalization. These motions lead to accessible conical intersections with the ground-state surface. The results are used to successfully interpret previous measurements on the photodissociation of adenosine 5'-monophosphate nucleotide anions and cations, where the latter react in a highly nonstatistical manner. 相似文献
The thermal and photochemical E/Z isomerization of camphorquinone‐derived imines was studied by a combination of kinetic, structural, and computational methods. The thermal isomerization proceeds by linear N inversion, whereas the photoinduced process occurs through C?N bond rotation with preferred directionality as a result of diastereoisomerism. Thereby, these imines are arguably the simplest example of synthetic molecular motors. The generality of the orthogonal trajectories of the thermal and photochemical pathways allows for the postulation that every suitable chiral imine qualifies, in principle, as a molecular motor driven by light or heat. 相似文献
Surface‐hopping simulations are used to study the nonradiative relaxation of 9H‐guanine. Two distinct S1→S0 (ππ*→gs) decay channels, both of which pass through a conical intersection (CI), are found to be responsible for the experimentally observed double‐decay behavior (see schematic diagram).
Electronic structure calculations and nonadiabatic dynamics simulations (more than 2000 trajectories) are used to explore the Z–E photoisomerization mechanism and excited‐state decay dynamics of two arylazopyrazole photoswitches. Two chiral S1/S0 conical intersections with associated enantiomeric S1 relaxation paths that are barrierless and efficient (timescale of ca. 50 fs) were found. For the parent arylazopyrazole (Z8) both paths contribute evenly to the S1 excited‐state decay, whereas for the dimethyl derivative (Z11) each of the two chiral cis minima decays almost exclusively through one specific enantiomeric S1 relaxation path. To our knowledge, the Z11 arylazopyrazole is thus the first example for nearly stereospecific unidirectional excited‐state relaxation. 相似文献
The trans-cis isomerization of the styrylpyridine carbon-carbon double bond induced by visible light irradiation in fac-[Re(CO)(3)(bpy)(stpy)](+) (bpy = 2,2'-bipyridine; stpy = t-4-styrylpyridine) has been investigated by means of quantum-chemical methods. The structures of the various cis and trans conformers of [Re(CO)(3)(bpy)(stpy)](+) have been optimized at the density functional theory (DFT) level. Three rotational conformers for the most stable trans isomer lie within 2.3 kJ mol(-1) each other. The energy difference between the cis and trans isomers is 27.0 kJ mol(-1). The electronic spectroscopy of the most stable conformers has been investigated by time-dependent DFT (TD-DFT) and complete active space self-consistent field/CAS second order perturbation theory (CASSCF/CASPT2) calculations. The lowest absorption bands are dominated by metal-to-ligand charge-transfer (MLCT, d(Re)-->pi*(bpy)) transitions calculated at about 25,000 cm(-1) and by a strong intraligand (1)IL (pi(stpy)-->pi*(stpy)) transition in the near UV region. On the basis of CASSCF potential energy curves (PECs) calculated as a function of the torsion angle of the C=C bond of the styrylpyridine ligand, it is shown that the role of the low-lying MLCT states is important in the photoisomerization mechanism. In contrast to the free organic ligand, in which the singlet mechanism is operational via the (1)IL (S(1)) and electronic ground (S(0)) states, coordination to the rhenium steers the isomerization to the triplet PEC corresponding to the (3)IL state. From the (3)IL(t) (t = trans) the system evolves to the perpendicular intermediate (3)IL(p) (p = perpendicular) following a 90 degrees rotation around the styrylpyridine C=C bond. The metal center acts as a photosensitizer because of the presence of photoactive MLCT states under visible irradiation. The position of the crossing between the (3)IL and electronic ground state PEC determines the quantum yield of the isomerization process. 相似文献
The mechanisms of photochemical isomerization reactions are investigated theoretically by using a model system of 1,2,4‐ oxadiazole with the CAS(14,9)/6‐311G(d) and MP2‐CAS‐(14,9)/ 6‐311++G(3df,3pd)//CAS(14,9)/6‐311G(d) methods. Three reaction pathways are examined, including 1) the direct mechanism, 2) the ring contraction–ring expansion mechanism, and 3) the internal cyclization–isomerization mechanism, which lead to two types of photoisomers. The theoretical findings suggest that conical intersections play a crucial role in the photorearrangement of 1,2,4‐oxadiazoles. These model investigations also indicate that the preferred reaction route for 1,2,4‐oxadiazole, which leads to phototransposition products, is as follows: reactant → Franck‐Condon region → conical intersection → photoproduct. In other words, the direct mechanism is a one‐step process that has no barrier. These theoretical results agree with the available experimental observations. 相似文献
The photoisomerization of 1,2‐dihydro‐1,2‐azaborine was investigated by high‐level multireference ab initio and density functional theory calculations. The intermediates (IMs) and transition states (TSs) on the S0 and S1 states were optimized using the state‐averaged complete active space self‐consistent field method. The multireference configuration interaction method with the Davidson correction was used to obtain accurate energetics. Moreover, the conical intersections (CIs), which play a crucial role in photoisomerization, were also optimized. On the basis of the calculation results, the most favorable proposed reaction pathway is as follows: reactant→Franck‐Condon region→TS1→CI→IM0→TS0P→product. The product was not directly formed through the CI, and the IM0 existed on the S0 state. These results show that the isomerization of 1,2‐dihydro‐1,2‐azaborine involves both photoreactions and thermal reactions. The calculated results clarify recent experimental observations. 相似文献
Molecular design of chromium arenes are theoretically studied as a model for the development of novel thermally‐driven molecular fuses. This study correlates the switching event with a partial disconnection of the molecule from the metallic electrode mediated by changes in the conformational states of the molecule directed by external stimuli. Moreover, the reversibility of the process (the reconnection to the metallic electrode) is also considered for these systems when a reversal voltage pulse (reset) is applied. The energetic requirements of the on and off states are correlated with temperature through the Arrhenius equation. To carry out this study we performed density functional theory (DFT) calculations. 相似文献
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices. 相似文献
Synthetic overcrowded alkene‐based molecular motors achieve 360° unidirectional rotary motion of one motor half (rotator) relative to the other (stator) through sequential photochemical and thermal isomerisation steps. In order to facilitate and expand the use of these motors for various applications, it is important to investigate ways to increase the rates and efficiencies of the reactions governing the rotary motion. Here, we use computational methods to explore whether the thermal isomerisation performance of some of the fastest available motors of this type can be further improved by reducing the sizes of the motor halves. Presenting three new redesigned motors that combine an indanylidene rotator with a cyclohexadiene, pyran or thiopyran stator, we first use multiconfigurational quantum chemical methods to verify that the photoisomerisations of these motors sustain unidirectional rotary motion. Then, by performing density functional calculations, we identify both stepwise and concerted mechanisms for the thermal isomerisations of the motors and show that the rate‐determining free‐energy barriers of these processes are up to 25 kJ mol?1 smaller than those of the original motors. Furthermore, the thermal isomerisations of the redesigned motors proceed in fewer steps. Altogether, the results suggest that the redesigned motors are useful templates for improving the thermal isomerisation performance of existing overcrowded alkene‐based motors. 相似文献
Two 2,2'-bipyridines, substituted at the 4,4'-positions by p-dialkylaminophenylazostyryl moieties p-R2N-C6H4-N=N-C6H4-CH=CH-[6 a, R2N=nBu2N; 6 b, R2N=(nBu)(C4H8OTHP)N; 6 c, R2N=(nBu)(C4H8OH)N], were successfully synthesized by using Wadworth-Emmons reactions. The X-ray structure of 6 a has been determined. Esterification of 6 c with 2-bromoisobutyroylbromide afforded 6 d. This ligand was used as an initiator for the living radical polymerization of methylmethacrylate (MMA) and gave rise to macroligand 6 e. Thin films of good optical quality were obtained by the spin-coating technique. Photoisomerization experiments were carried out on 6 a in solution and on 6 e in both solution and film, and the kinetics of photochemical (E/Z) and thermal (Z/E) isomerization were investigated. They were found to show Z-E back isomerization typical of aminoazobenzene-type rather than of push-pull-type molecules. Density functional theoretical (TD-DFT) calculations were performed on model compound 6 a' (R2N=Me2N) to understand the structural and electronic transitions of the corresponding E-E, E-Z and Z-Z isomers. It was found that the E-E isomer is almost planar as observed experimentally by X-ray diffraction, whereas the Z-Z isomer, which is 35.4 kcal mol(-1) less stable than the E-E isomer, is nonplanar. The theoretical studies also reveal that several transitions of pi-pi*, n-pi* and charge-transfer (CT) types, are involved in the long-wavelength transition of 6 a (E-E). The same observations can be made for the (Z-Z) isomer, and the TD-DFT simulated spectrum fits quite nicely to the experimental, reproducing and explaining the apparition of a blue-shifted charge-transfer band at 390 nm. 相似文献
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches. 相似文献
The mechanisms of the photochemical isomerization reactions were investigated theoretically by using a model system of 1,2‐dihydro‐1,2‐azaborine with the CAS(6,6)/6‐311G(d,p) and MP2‐CAS‐(6,6)/6‐311++G(3df,3pd)//CAS(6,6)/6‐311G(d,p) methods. Three reaction pathways, which lead to three kinds of photoisomers, have been examined. The structures of the conical intersections, which play a decisive role in such photorearrangements, were obtained. The thermal (or dark) reactions of the reactant species have also been examined by using the same level of theory to assist in providing a qualitative explanation of the reaction pathways. The model investigations suggest that the preferred reaction route for 1,2‐dihydro‐1,2‐azaborine, which leads to the Dewar 1,2‐dihydro‐1,2‐azaborine photoproduct, is as follows: reactant→Franck–Condon region→conical intersection→photoproduct. The results obtained allow a number of predictions to be made. 相似文献
The potential surfaces of the ground and lowest excited states of the [RuCl5NO]2? complex ion were studied by density functional theory. The conical intersections between the potential surfaces of the ground and lowest excited states were found and characterized. The possible routes from the conical intersection points to the ground state and metastable bond isomers were traced. A preliminary scheme, describing photoisomerizations in the complex, was suggested. 相似文献