首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we demonstrate single‐molecule imaging of triple helix formation in DNA nanostructures. The binding of the single‐molecule third strand to double‐stranded DNA in a DNA origami frame was examined using two different types of triplet base pairs. The target DNA strand and the third strand were incorporated into the DNA frame, and the binding of the third strand was controlled by the formation of Watson–Crick base pairing. Triple helix formation was monitored by observing the structural changes in the incorporated DNA strands. It was also examined using a photocaged third strand wherein the binding of the third strand was directly observed using high‐speed atomic force microscopy during photoirradiation. We found that the binding of the third strand could be controlled by regulating duplex formation and the uncaging of the photocaged strands in the designed nanospace.  相似文献   

2.
Metal-mediated base pair formation, resulting from the interaction between metal ions and artificial bases in oligonucleotides, has been developed for its potential application in nanotechnology. We have recently found that the T:T mismatched base pair binds with Hg(II) ions to generate a novel metal-mediated base pair in duplex DNA. The thermal stability of the duplex with the T-Hg-T base pair was comparable to that of the corresponding T:A or A:T. The novel T-Hg-T base pair involving the natural base thymine is more convenient than the metal-mediated base pairs involving artificial bases due to the lack of time-consuming synthesis. Here, we examine the specificity and thermodynamic properties of the binding between Hg(II) ions and the T:T mismatched base pair. Only the melting temperature of the duplex with T:T and not of the perfectly matched or other mismatched base pairs was found to specifically increase in the presence of Hg(II) ions. Hg(II) specifically bound with the T:T mismatched base pair at a molar ratio of 1:1 with a binding constant of 10(6) M(-1), which is significantly higher than that for nonspecific metal ion-DNA interactions. Furthermore, the higher-order structure of the duplex was not significantly distorted by the Hg(II) ion binding. Our results support the idea that the T-Hg-T base pair could eventually lead to progress in potential applications of metal-mediated base pairs in nanotechnology.  相似文献   

3.
We demonstrate the single‐molecule imaging of the catalytic reaction of a Zn2+‐dependent DNAzyme in a DNA origami nanostructure. The single‐molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high‐speed atomic force microscopy (AFM). This nanostructure‐based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single‐molecule level.  相似文献   

4.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

5.
We study the formation and fluorescent properties of silver nanoclusters encapsulated in condensed DNA nanoparticles. Fluorescent globular DNA nanoparticles are formed using a dsDNA–cluster complex and polyallylamine as condensing agents. The fluorescence emission spectrum of single DNA nanoparticles is obtained using tip‐enhanced fluorescence microscopy. Fluorescent clusters in condensed DNA nanoparticles appear to be more protected against destructive damage in solution compared to clusters synthesized on a linear polymer chain. The fluorescent clusters on both dsDNA and ssDNA exhibit the same emission bands (at 590 and 680 nm) and the same formation efficiency, which suggests the same binding sites. By using density functional theory, we show that the clusters may bind to the Watson–Crick guanine–cytosine base pairs and to single DNA bases with about the same affinity.  相似文献   

6.
We have designed and synthesised a double‐headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson–Crick base pairs with two complementary adenosines in a Watson–Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double‐headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double‐headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B‐type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double‐headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

7.
The incorporation of transition‐metal ions into nucleic acids by using metal‐mediated base pairs has proved to be a promising strategy for the site‐specific functionalization of these biomolecules. We report herein the formation of Ag+‐mediated Hoogsteen‐type base pairs comprising 1,3‐dideaza‐2′‐deoxyadenosine and thymidine. By defunctionalizing the Watson–Crick edge of adenine, the formation of regular base pairs is prohibited. The additional substitution of the N3 nitrogen atom of adenine by a methine moiety increases the basicity of the exocyclic amino group. Hence, 1,3‐dideazaadenine and thymine are able to incorporate two Ag+ ions into their Hoogsteen‐type base pair (as compared with one Ag+ ion in base pairs with 1‐deazaadenine and thymine). We show by using a combination of experimental techniques (UV and circular dichroism (CD) spectroscopies, dynamic light scattering, and mass spectrometry) that this type of base pair is compatible with different sequence contexts and can be used contiguously in DNA double helices. The most stable duplexes were observed when using a sequence containing alternating purine and pyrimidine nucleosides. Dispersion‐corrected density functional theory calculations have been performed to provide insight into the structure, formation and stabilization of the twofold metalated base pair. They revealed that the metal ions within a base pair are separated by an Ag???Ag distance of about 2.88 Å. The Ag–Ag interaction contributes some 16 kcal mol?1 to the overall stability of the doubly metal‐mediated base pair, with the dominant contribution to the Ag–Ag bonding resulting from a donor–acceptor interaction between silver 4d‐type and 4s orbitals. These Hoogsteen‐type base pairs enable a higher functionalization of nucleic acids with metal ions than previously reported metal‐mediated base pairs, thereby increasing the potential of DNA‐based nanotechnology.  相似文献   

8.
使用紫外和荧光光谱法研究了萘普生和酵母DNA之间的相互作用。酵母DNA对萘普生的荧光存在强烈的猝灭作用,其作用方式随DNA浓度的变化而发生转变。用Stern-Volmer方程与Scatchard方程两种方法得到相同结果:在较低的DNA浓度下,萘普生与DNA间的作用较弱,而在较高DNA浓度时,萘普生与DNA的作用较强,键合位点数也随着酵母DNA浓度的升高而在临界酵母DNA浓度100 mmol/L附近出现转变。紫外光谱、离子强度的影响和I-猝灭等研究表明,DNA浓度的变化并不改变两者间的作用方式,它们之间始终是一种沟槽作用模式。  相似文献   

9.
Bending with high curvature is one of the major mechanical properties of double‐stranded DNA (dsDNA) that is essential for its biological functions. The emergence of a kink arising from local melting in the middle of dsDNA has been suggested as a mechanism of releasing the energy cost of bending. Herein, we report that strong bending induces two types of short dsDNA deformations, induced by two types of local melting, namely, a kink in the middle and forks at the ends, which we demonstrate using D‐shaped DNA nanostructures. The two types of deformed dsDNA structures dynamically interconvert on a millisecond timescale. The transition from a fork to a kink is dominated by entropic contribution (anti‐Arrhenius behavior), while the transition from a kink to a fork is dominated by enthalpic contributions. The presence of mismatches in dsDNA accelerates kink formation, and the transition from a kink to a fork is removed when the mismatch size is three base pairs.  相似文献   

10.
A novel bifacial ligand‐bearing nucleobase, 5‐hydroxyuracil ( UOH ), which forms both a hydrogen‐bonded base pair ( UOH –A) and a metal‐mediated base pair ( UOH –M– UOH ) has been developed. The UOH –M– UOH base pairs were quantitatively formed in the presence of lanthanide ions such as GdIII when UOH – UOH pairs were consecutively incorporated into DNA duplexes. This result established metal‐assisted duplex stabilization as well as DNA‐templated assembly of lanthanide ions. Notably, a duplex possessing UOH –A base pairs was destabilized by addition of GdIII ions. This observation suggests that the hybridization behaviors of the UOH ‐containing DNA strands are altered by metal complexation. Thus, the UOH nucleobase with a bifacial base‐pairing property holds great promise as a component for metal‐responsive DNA materials.  相似文献   

11.
The interaction of ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide; EB) with double stranded (ds) calf thymus DNA and thermally denatured single stranded (ss) DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer, pH 5.0. As a result of intercalation of this dye between the base pairs of dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased and after a particular concentration of EB a new peak at +0.81 V appeared, probably due to the formation of a complex between dsDNA and EB. The non-intercalated EB gives another peak, but at an increased concentration of the dye. A similar behaviour was observed during the interaction of the dye with ssDNA.Furthermore, the interaction of EB with ds, ss and supercoiled (sc) DNA was studied at the hanging mercury drop electrode (HMDE) surface by means of alternating current voltammetry in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. dsDNA yields a smaller peak at −1.42 V (peak III) compared to the one yielded by ssDNA, since the latter is a relaxed and more accessible form. By addition of EB into the buffer solution an increase of peak III was observed in the dsDNA form as well as in ssDNA resulting from their interaction with EB. Furthermore, the appearance of peak III in covalently closed circular scDNA after exposure to increasing concentrations of EB is a result of the introduction of ‘free ends’ in DNA affecting its structural integrity.  相似文献   

12.
DNA conformation and base number simultaneously determined in a nanopore   总被引:1,自引:0,他引:1  
When dsDNA polymers containing identical number of base pairs were electrophoresed through a nanopore in a voltage biased silicon nitride membrane, the measured time integral of blocked ionic current (the event-charge-deficit, ecd, Fologea, D., Gershow, M., Ledden, B., McNabb, D. S. et al.., Nano Lett. 2005, 5, 1905-1909) for each translocation event was the same regardless of whether the molecules were in a linear, circular relaxed, or supercoiled form. Conversely, when DNA polymers containing different numbers of base pairs were electrophoresed through a nanopore, the ecd depended strongly on, and predicted the value of, the molecule's number of base pairs. Measurements showed that the magnitude of the current blockages was strongly affected by a molecule's form. The current blockages exhibited characteristic differences that distinguished among single-stranded linear, double-stranded linear, circular relaxed, and supercoiled forms. Because the data that establish ecd are usually determined concomitantly with current blockade measurements, our results show that a single nanopore assay can simultaneously determine both DNA conformation and base number.  相似文献   

13.
A new C‐nucleoside structurally based on the hydroxyquinoline ligand was synthesized that is able to form stable pairs in DNA in both the absence and the presence of metal ions. The interactions between the metal centers in adjacent CuII‐mediated base pairs in DNA were probed by electron paramagnetic resonance (EPR) spectroscopy. The metal–metal distance falls into the range of previously reported values. Fluorescence studies with a donor–DNA–acceptor system indicate that photoinduced charge‐transfer processes across these metal‐ion‐mediated base pairs in DNA occur more efficiently than over natural base pairs.  相似文献   

14.
There are only a few systematic rules about how to selectively control the formation of DNA‐templated metal nanoparticles (NPs) by varying sequence combinations of double‐stranded DNA (dsDNA), although many attempts have been made. Herein, we develop a facile method for sequence‐dependent formation of fluorescent CuNPs by using dsDNA as templates. Compared with random sequences, AT sequences are better templates for highly fluorescent CuNPs. Other specific sequences, for example, GC sequences, do not induce the formation of CuNPs. These results shed light on directed DNA metallization in a sequence‐specific manner. Significantly, both the fluorescence intensity and the fluorescence lifetime of CuNPs can be tuned by the length or the sequence of dsDNA. In order to demonstrate the promising practicality of our findings, a sensitive and label‐free fluorescence nuclease assay is proposed.  相似文献   

15.
本研究以电化学聚合法制备了聚苯胺掺杂乙醇胺修饰电极,并成功固定了DNA探针。文中对修饰电极的制备和DNA的固定杂交条件进行了探讨,并利用循环伏安法测定嵌入双链DNA(dsDNA)分子碱基对中的亚甲基蓝的氧化还原峰电流,识别和测定溶液中互补的单链DNA(ssDNA)片段,从而实现对溶液中不同基因片段的检测。  相似文献   

16.
两种水溶性卟啉与DNA相互作用的研究   总被引:6,自引:0,他引:6  
卟啉化合物以其对肿瘤组织的特殊亲和性和光动力学效应受到广泛的重视,国内外这方面的研究报导甚多.自1979年Fief等人[1]证实水溶性四-(4-甲基吡啶基)卟啉及其金属配合物能嵌入DNA的碱基之后,人们以这类水溶性卟啉为模型化合物,利用各种物理和化学手段研究它们与DNA和RNA  相似文献   

17.
Stanić Z  Girousi S 《Talanta》2008,76(1):116-121
The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.  相似文献   

18.
We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (~200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA.  相似文献   

19.
The experimental construction of a double-stranded DNA microcircle of only 42 base pairs entailed a great deal of ingenuity and hard work. However, figuring out the three-dimensional structures of intermediates and the final product can be particularly baffling. Using a combination of model building and unrestrained molecular dynamics simulations in explicit solvent we have characterized the different DNA structures involved along the process. Our 3D models of the single-stranded DNA molecules provide atomic insight into the recognition event that must take place for the DNA bases in the cohesive tail of the hairpin to pair with their complementary bases in the single-stranded loops of the dumbbell. We propose that a kissing loop involving six base pairs makes up the core of the nascent dsDNA microcircle. We also suggest a feasible pathway for the hybridization of the remaining complementary bases and characterize the final covalently closed dsDNA microcircle as possessing two well-defined U-turns. Additional models of the pre-ligation complex of T4 DNA ligase with the DNA dumbbell and the post-ligation pre-release complex involving the same enzyme and the covalently closed DNA microcircle are shown to be compatible with enzyme recognition and gap ligation.  相似文献   

20.
8‐Phenylimidazolo‐dC (phImidC, 2 ) forms metal‐mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent “purine” 2′‐deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6 . Owing to the ease of nucleobase deprotonation, the new Ag+‐mediated base pair containing a “purine” skeleton is much stronger than that derived from the pyrrolo‐ [3,4‐d]pyrimidine system (phPyrdC, 1 ). The silver‐mediated phImidC–phImidC base pair fits well into the DNA double helix and has the stability of a covalent cross‐link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号