首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邓定文  赵紫琳 《计算数学》2022,44(4):561-584
本文研究求解二维Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)方程的一类保正保界差分格式.运用能量分析法证明了当网格比满足$R_{x}+R_{y}+[b\tau (p-1)]/2\leq\frac{1}{2}$时差分解具有一系列数学性质,包括保正性、保界性和单调性,且在无穷范数意义下有$O (\tau+h_{x}^{2}+h_{y}^{2})$的收敛阶.然后通过发展Richardson外推法得到收敛阶为$O (\tau^{2}+h_{x}^{4}+h_{y}^{4})$的外推解.最后数值实验表明数值结果与理论结果相吻合.值得提及的是在运用本文构造的Richardson外推法时对时空网格比没有增加更严格的条件.  相似文献   

2.
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations \[\begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases}\] where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system.  相似文献   

3.
We study the existence of solutions for the following fractional Hamiltonian systems $$ \left\{ \begin{array}{ll} - _tD^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}u(t))-\lambda L(t)u(t)+\nabla W(t,u(t))=0,\\[0.1cm] u\in H^{\alpha}(\mathbb{R},\mathbb{R}^n), \end{array} \right. ~~~~~~~~~~~~~~~~~(FHS)_\lambda $$ where $\alpha\in (1/2,1)$, $t\in \mathbb{R}$, $u\in \mathbb{R}^n$, $\lambda>0$ is a parameter, $L\in C(\mathbb{R},\mathbb{R}^{n^2})$ is a symmetric matrix, $W\in C^1(\mathbb{R} \times \mathbb{R}^n,\mathbb{R})$. Assuming that $L(t)$ is a positive semi-definite symmetric matrix, that is, $L(t)\equiv 0$ is allowed to occur in some finite interval $T$ of $\mathbb{R}$, $W(t,u)$ satisfies some superquadratic conditions weaker than Ambrosetti-Rabinowitz condition, we show that (FHS)$_\lambda$ has a solution which vanishes on $\mathbb{R}\setminus T$ as $\lambda \to \infty$, and converges to some $\tilde{u}\in H^{\alpha}(\R, \R^n)$. Here, $\tilde{u}\in E_{0}^{\alpha}$ is a solution of the Dirichlet BVP for fractional systems on the finite interval $T$. Our results are new and improve recent results in the literature even in the case $\alpha =1$.  相似文献   

4.
A combined scheme of the improved two-grid technique with the block-centered finite difference method is constructed and analyzed to solve the nonlinear time-fractional parabolic equation. This method is considered where the nonlinear problem is solved only on a coarse grid of size $H$ and two linear problems based on the coarse-grid solutions and one Newton iteration is considered on a fine grid of size $h$. We provide the rigorous error estimate, which demonstrates that our scheme converges with order $\mathcal{O}(\Delta t^{2-\alpha}+h^2+H^4)$ on non-uniform rectangular grid. This result indicates that the improved two-grid method can obtain asymptotically optimal approximation as long as the mesh sizes satisfy $h=\mathcal{O}(H^2).$ Finally, numerical tests confirm the theoretical results of the presented method.  相似文献   

5.
研究了欧氏空间R~2中单位方体Q~2=[0,1]~2上沿曲面(t,s,γ(t,s))的振荡奇异积分算子T_(α,β)f(u,v,x)=∫_(Q~2)f(u-t,v-s,x-γ(t,s))e~(it~(-β_1)s~(-β_2))t~(-1-α_1)s~(-1-α_2)dtds从Sobolev空间L_τ~p(R~(2+n))到L~p(R~(2+n))中的有界性,其中x∈R~n,(u,v)∈R~2,(t,s,γ(t,s))=(t,s,t~(P_1)s~(q_1),t~(p_2)s~(q_2),…,t~(p_n)s~(q_n))为R~(2+n)上一个曲面,且β_1α_1≥0,β_2α_20.这些结果推广和改进了R~3上的某些已知的结果.作为应用,得到了乘积空间上粗糖核奇异积分算子的Sobolev有界性.  相似文献   

6.
In this paper, finite element method with high-order approximation for time fractional derivative is considered and discussed to find the numerical solution of time fractional convection-diffusion equation. Some lemmas are introduced and proved, further the stability and error estimates are discussed and analyzed, respectively. The convergence result $O(h^{r+1}+\tau^{3-\alpha})$ can be derived, which illustrates that time convergence rate is higher than the order $(2-\alpha)$ derived by $L1$-approximation. Finally, to validate our theoretical results, some computing data are provided.  相似文献   

7.
本文研究了分数阶薛定谔-泊松系统$$\left\{\begin{array}{l}(-\Delta)^su+u+\phi u=\lambda f(u)\ \text {in} \ \mathbb {R}^3, \\ (-\Delta)^{\alpha}\phi =u^2\ \text {in} \ \mathbb {R}^3\emph{},\end{array}\right. $$ 非零解的存在性, 其中$s\in (\frac{3}{4},1), \alpha\in(0,1),\lambda$ 是正参数, $(-\Delta)^s,(-\Delta)^{\alpha}$是分数阶拉普拉斯算子. 在一定的假设条件下, 利用扰动法和Morse迭代法, 得到了系统至少一个非平凡解.  相似文献   

8.
The paper describes a search for increasingly large extrema (ILE) of in the range . For , the complete set of ILE (57 of them) was determined. In total, 162 ILE were found, and they suggest that . There are several regular patterns in the location of ILE, and arguments for these regularities are presented. The paper concludes with a discussion of prospects for further computational progress.

  相似文献   


9.
In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $$ \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\ (-\Delta_p)^s v= b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\ u=v = 0 ,\;\;\mbox{ in }\,\mathbb{R}^N\setminus\Omega, \end{array} \right. $$ where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary, $0<\alpha <1,$ $0<\beta <1,$ $2-\alpha -\beta 相似文献   

10.
假设a,b0并且K_(a,b)(x)=(e~(i|x|~(-b)))/(|x|~(n+a))定义强奇异卷积算子T如下:Tf(x)=(K_(a,b)*f)(x),本文主要考虑了如上定义的算子T在Wiener共合空间W(FL~p,L~q)(R~n)上的有界性.另一方面,设α,β0并且γ(t)=|t|~k或γ(t)=sgn(t)|t|~k.利用振荡积分估计,本文还研究了算子T_(α,β)f(x,y)=p.v∫_(-1)~1f(x-t,y-γ(t))(e~(2πi|t|~(-β)))/(t|t|~α)dt及其推广形式∧_(α,β)f(x,y,z)=∫_(Q~2)f(x-t,y-s,z-t~ks~j)e~(-2πit)~(-β_1_s-β_2)t~(-α_1-1)s~(-α_2-1)dtds在Wiener共合空间W(FL~p,L~q)上的映射性质.本文的结论足以表明,Wiener共合空间是Lebesgue空间的一个很好的替代.  相似文献   

11.
In this paper, we study the Holder regularity of weak solutions to the Dirichlet problem associated with the regional fractional Laplacian (-△)αΩ on a bounded open set Ω ■R(N ≥ 2) with C(1,1) boundary ■Ω. We prove that when f ∈ Lp(Ω), and g ∈ C(Ω), the following problem (-△)αΩu = f in Ω, u = g on ■Ω, admits a unique weak solution u ∈ W(α,2)(Ω) ∩ C(Ω),where p >N/2-2α and 1/2< α < 1. To solve this problem, we consider it into two special cases, i.e.,g ≡ 0 on ■Ω and f ≡ 0 in Ω. Finally, taking into account the preceding two cases, the general conclusion is drawn.  相似文献   

12.
This paper is concerned with numerical solutions of time-fractional parabolic equations. Due to the Caputo time derivative being involved, the solutions of equations are usually singular near the initial time $t = 0$ even for a smooth setting. Based on a simple change of variable $s = t^β$, an equivalent $s$-fractional differential equation is derived and analyzed. Two types of finite difference methods based on linear and quadratic approximations in the $s$-direction are presented, respectively, for solving the $s$-fractional differential equation. We show that the method based on the linear approximation provides the optimal accuracy$\mathcal{O}(N ^{−(2−α)})$ where $N$ is the number of grid points in temporal direction. Numerical examples for both linear and nonlinear fractional equations are presented in comparison with $L1$ methods on uniform meshes and graded meshes, respectively. Our numerical results show clearly the accuracy and efficiency of the proposed methods.  相似文献   

13.
The Ces\aro operator $\mathcal{C}_{\alpha}$ is defined by \begin{equation*} (\mathcal{C}_{\alpha}f)(x) = \int_{0}^{1}t^{-1}f\left( t^{-1}x \right)\alpha (1-t)^{\alpha -1}\,dt~, \end{equation*} where $f$ denotes a function on $\mathbb{R}$. We prove that $\mathcal{C}_{\alpha}$, $\alpha >0$, is a bounded operator in the Hardy space $H^{p}$ for every $0 < p \leqq 1$.  相似文献   

14.
In this paper, a compact finite difference scheme with global convergence order $O(\tau^{2}+h^4)$ is derived for fourth-order fractional sub-diffusion equations subject to Neumann boundary conditions. The difficulty caused by the fourth-order derivative and Neumann boundary conditions is carefully handled. The stability and convergence of the proposed scheme are studied by the energy method. Theoretical results are supported by numerical experiments.  相似文献   

15.
Let $L=\Delta ^{\alpha /2}+ b\cdot \nabla $ with $\alpha \in (1,2)$ . We prove the Martin representation and the Relative Fatou Theorem for non-negative singular L-harmonic functions on $\mathcal{C }^{1,1}$ bounded open sets.  相似文献   

16.
This paper devotes to consider the local existence of the strong solutions to the generalized MHD system with fractional dissipative terms $\Lambda^{2\alpha}u$ for the velocity field and $\Lambda^{2\alpha}b$ for the magnetic field, respectively. We construct the approximate solutions by the Fourier truncation method, and use energy method to obtain the local existence of strong solutions in $H^s(\mathbb{R}^n)\,(s>\max \left\{\frac{n}{2}+1-2\alpha, 0\right\})$ for any $\alpha\geq0$.  相似文献   

17.
In this paper, oscillatory and asymptotic properties of solutions of nonlinear fourth order neutral dynamic equations of the form $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = 0(H)$ and $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = f(t),(NH)$ are studied on a time scale $\mathbb{T}$ under the assumption that $\int\limits_{t_0 }^\infty {\tfrac{t} {{r(t)}}\Delta t = \infty } $ and for various ranges of p(t). In addition, sufficient conditions are obtained for the existence of bounded positive solutions of the equation (NH) by using Krasnosel’skii’s fixed point theorem.  相似文献   

18.
For an integral parameter we investigate the family of Thue equations

originating from Emma Lehmer's family of quintic fields, and show that for the only solutions are the trivial ones with or . Our arguments contain some new ideas in comparison with the standard methods for Thue families, which gives this family a special interest.

  相似文献   


19.
Let $\Omega\subset \mathbb{R}^4$ be a smooth bounded domain, $W_0^{2,2}(\Omega)$ be the usual Sobolev space. For any positive integer $\ell$, $\lambda_{\ell}(\Omega)$ is the $\ell$-th eigenvalue of the bi-Laplacian operator. Define $E_{\ell}=E_{\lambda_1(\Omega)}\oplus E_{\lambda_2(\Omega)}\oplus\cdots\oplus E_{\lambda_{\ell}(\Omega)}$, where $E_{\lambda_i(\Omega)}$ is eigenfunction space associated with $\lambda_i(\Omega)$. $E^{\bot}_{\ell}$ denotes the orthogonal complement of $E_\ell$ in $W_0^{2,2}(\Omega)$. For $0\leq\alpha<\lambda_{\ell+1}(\Omega)$, we define a norm by $\|u\|_{2,\alpha}^{2}=\|\Delta u\|^2_2-\alpha \|u\|^2_2$ for $u\in E^\bot_{\ell}$. In this paper, using the blow-up analysis, we prove the following Adams inequalities$$\sup_{u\in E_{\ell}^{\bot},\,\| u\|_{2,\alpha}\leq 1}\int_{\Omega}e^{32\pi^2u^2}{\rm d}x<+\infty;$$moreover, the above supremum can be attained by a function $u_0\in E_{\ell}^{\bot}\cap C^4(\overline{\Omega})$ with $\|u_0\|_{2,\alpha}=1$. This result extends that of Yang (J. Differential Equations, 2015), and complements that of Lu and Yang (Adv. Math. 2009) and Nguyen (arXiv: 1701.08249, 2017).  相似文献   

20.
In this paper,we consider the strong dissipative KDV type equation on an unbounded domain R1.By applying the theory of decomposing operator and the method of constructing some compact operator in weighted space,the existence of exponential attractor in phase space H2(R1) is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号