首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new class of protocols to solve finite-time consensus for multi-agent systems. The protocols are induced from the classical finite-time consensus algorithm by using the so-called protocol function. Sufficient conditions are established for networked agents to experience finite-time consensus under time-varying undirected and fixed directed topologies. Numerical simulations show that the proposed protocols can provide more flexibility to improve convergence rate.  相似文献   

2.
In this paper, the leader-following exponential consensus problem of general linear multi-agent systems via event-triggered control is considered. By using the combinational measurements, two classes of event triggers are designed, one depends on continuous communications between the agents, the other avoids continuous communications. For such two classes of event triggers, the exponential consensus as well as the convergence rates of the controlled multi-agent systems are studied, respectively, by employing the M-matrix theory, algebraic graph theory and the Lyapunov method.  相似文献   

3.
Many real systems involve not only parameter changes but also sudden variations in environmental conditions, which often causes unpredictable topologies switching. This paper investigates the impulsive consensus problem of the one-sided Lipschitz nonlinear multi-agent systems (MASs) with Semi-Markov switching topologies. Different from the existing modeling methods of the Markov chain, the Semi-Markov chain is adopted to describe this kind of randomly occurring changes reasonably. To cope with the communication and control cost constraints in the multi-agent systems, the distributed impulsive control method is applied to address the leader–follower consensus problem. Beyond that, to obtain a wider nonlinear application range, the one-sided condition is delicately developed to the controller design, and the results are different from the ones obtained in the traditional method with the Lipschitz condition (note that the existing results are usually only applicable to the case with small Lipschitz constant). Based on the characteristics of cumulative distribution functions, the theory of Lyapunov-like function and impulsive differential equation, the asymptotically mean square consensus of multi-agent systems is maintained with the proposed impulsive control protocol. Finally, an explanatory simulation is presented to validate the correctness of the proposed approach conclusively.  相似文献   

4.
This paper considers the problem of fixed-time stability (FTS) for switched nonlinear time-varying (NTV) systems. Firstly, three sufficient conditions are proposed to verify the FTS of NTV systems by using the improved Lyapunov function, which has a tighter upper bound of time derivative. Then, two FTS conditions are given for the switched NTV system by extending the obtained results, moreover, a switching strategy is also provided by using the minimum dwell time method. Finally, the obtained results are extended to study the FTS of impulsive NTV systems. Comparing with the existing results, the obtained conditions have two improvements: (1) provides a more accurate estimate for the upper bound of settling time of NTV systems, and (2) allows the Lyapunov function to increase at the switching instant of switched NTV (or impulsive NTV) systems. Two numerical examples are given to illustrate the theoretical results.  相似文献   

5.
In this paper, the impulsive consensus problem for multi-agent systems is investigated. The purpose of this paper is to provide a valid consensus protocol that overcomes the difficulty caused by stochastically switching structures via impulsive control. Some sufficient conditions of almost sure consensus are proposed when the switching structures are the independent process or the Markov process. It is shown that the sum-zero rows of matrix play a key role in achieving group consensus. Furthermore, simulation examples are provided to illustrate and visualize the effectiveness of these results.  相似文献   

6.
This paper considers the consensus control problem of multi-agent systems (MAS) with distributed parameter models. Based on the framework of network topologies, a second-order PI-type iterative learning control (ILC) protocol with initial state learning is proposed by using the nearest neighbor knowledge. A discrete system for proposed ILC is established, and the consensus control problem is then converted to a stability problem for such a discrete system. Furthermore, by using generalized Gronwall inequality, a sufficient condition for the convergence of the consensus errors between any two agents is obtained. Finally, the validity of the proposed method is verified by two numerical examples.  相似文献   

7.
This paper investigates the problem of global fixed-time stabilization for a class of uncertain switched nonlinear systems with the general powers, namely, the powers of the considered systems can be different odd rational numbers, even rational numbers or both odd and even rational numbers. By skillfully using the common Lyapunov function method and the adding a power integrator technique, a common state feedback control strategy is developed. It is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to zero for any given fixed time under arbitrary switchings. Simulation results of the liquid-level system are provided to show the effectiveness of the proposed method.  相似文献   

8.
In this paper, we perform an in-depth study about the consensus problem of heterogeneous multi-agent systems with linear and nonlinear dynamics.Specifically, this system is composed of two classes of agents respectively described by linear and nonlinear dynamics. By the aid of the adaptive method and Lyapunov stability theory, the mean consensus problem is realized in the framework of first-order case and second-order case under undirected and connected networks.Still, an meaningful example is provided to verify the effectiveness of the gained theoretical results. Our study is expected to establish a more realistic model and provide a better understanding of consensus problem in the multi-agent system.  相似文献   

9.
In this paper, the consensus problem for nonlinear multi-agent systems with variable impulsive control method is studied. In order to decrease the communication wastage, a novel distributed impulsive protocol is designed to achieve consensus. Compared with the common impulsive consensus method with fixed impulsive instants, the variable impulsive consensus method proposed in this paper is more flexible and reliable in practical application. Based on Lyapunov stability theory and some inequality techniques, several novel impulsive consensus conditions are obtained to realize the consensus of multi-agent systems. Finally, some necessary simulations are performed to validate the effectiveness of theoretical results.  相似文献   

10.
In this paper, the behavior of scalar multi-agent systems over networks subject to time-driven jumps. Assuming that all agents communicate through distinct communication digraphs at jump and flow times, the asymptotic multi-consensus behavior of the hybrid network is explicitly characterized. The hybrid multi-consensus is shown to be associated with a suitable partition that is almost equitable for both the jump and flow communication digraphs. In doing so, no assumption on the underlying digraphs is introduced. Finally, the coupling rules making the multi-consensus subspace attractive are established. Several simulation examples illustrate the theoretical results.  相似文献   

11.
This paper discuss the cluster consensus of multi-agent dynamical systems (MADSs) with impulsive effects and coupling delays. Some sufficient conditions that guarantee cluster consensus in MADS are derived. In each cluster, agents update their position and velocity states according to a leader’s instantaneous information, and interactions among agents are uncertain. Furthermore, switching topology problem in MADS is considered by impulsive stability and adaptive strategy. Finally, numerical simulations are given to verify our theoretical analysis.  相似文献   

12.
In this paper, the consensus problem of uncertain nonlinear multi‐agent systems is investigated via reliable control in the presence of probabilistic time‐varying delay. First, the communication topology among the agents is assumed to be directed and fixed. Second, by introducing a stochastic variable which satisfies Bernoulli distribution, the information of probabilistic time‐varying delay is equivalently transformed into the deterministic time‐varying delay with stochastic parameters. Third, by using Laplacian matrix properties, the consensus problem is converted into the conventional stability problem of the closed‐loop system. The main objective of this paper is to design a state feedback reliable controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed‐loop system is robustly stable in the sense of mean‐square. For this purpose, through construction of a suitable Lyapunov–Krasovskii functional containing four integral terms and utilization of Kronecker product properties along with the matrix inequality techniques, a new set of delay‐dependent consensus stabilizability conditions for the closed‐loop system is obtained. Based on these conditions, the desired reliable controller is designed in terms of linear matrix inequalities which can be easily solved by using any of the effective optimization algorithms. Moreover, a numerical example and its simulations are included to demonstrate the feasibility and effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 138–150, 2016  相似文献   

13.
张强 《中国科学:数学》2013,43(6):529-540
多自主体系统是当前系统控制界研究的热点问题. 在实际中, 自主体系统通常并不是在理想的环境下执行任务, 而是面临多源头、多层次和多变化的各类不确定性因素的影响. 它们通过在微观层面上影响各自主体决策的正确性, 从而在宏观上对自主体系统的整体行为产生显著影响. 不确定性因素和多自主体系统分布式信息架构交互耦合, 给系统的设计与分析带来本质性困难. 本文围绕分布式估计与分布式控制问题, 研究在随机通信噪声、数据丢失、量化和系统未知结构参数等不确定因素影响下, 如何为各自主体设计更加鲁棒、更加有效的分布式估计算法及分布式控制律, 以实现全局估计与控制目标, 并对闭环系统性能进行系统分析.  相似文献   

14.
This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.  相似文献   

15.
16.
In this paper the distributed consensus problem for a class of multi-agent chaotic systems with unknown time delays under switching topologies and directed intermittent communications is investigated. Each agent is modeled as a general nonlinear system including many chaotic systems with or without time delays. Based on the Lyapunov stability theory and graph theory, some sufficient conditions guarantee the exponential convergence. A graph-dependent Lyapunov proof provides the definite relationship among the bound of unknown time delays, the admissible communication rate and each possible topology duration. Moreover, the relationship reveals that these parameters have impacts on both the convergence speed and control cost. The case with leader-following communication graph is also addressed. Finally, simulation results verify the effectiveness of the proposed method.  相似文献   

17.
In this study, we are concerned with the impulsive consensus control problem for a class of nonlinear multi-agent systems (MASs) which have unknown dynamics and directed communication topology. The neural networks (NNs) method is the first utilized to construct distributed event-triggered impulsive consensus protocol. In contrast to the existing impulsive consensus protocol, the consensus protocol proposed in this paper does not need the dynamics of agents, which enhances the system robustness, and realizes distributed event-triggered communication between agents, which can reduce unnecessary consumption of communication resources. Sufficient conditions are derived to ensure the consensus of the controlled MASs and the exclusion of Zeno-behavior. Finally, simulation examples are presented to illustrate the effectiveness of the proposed control protocol.  相似文献   

18.
This paper studies scaled-based practical consensus issue for multiagent systems with input time delay by a fully continuous communication-free integral-type event-triggered scheme. By choosing the proper scales, scaled consensus can be induced to synchronization, bipartite consensus or cluster consensus. By defining a continuous communication-free measurement error for the integral-type event-triggered mechanism, the new integral-type event-triggered condition is proposed which can not only reduce the energy consumption but also prolong the interevent time. Then, with time domain analysis method, the distributed integral-type event-triggered control problem for nonlinear general multiagent systems involving input time delay is investigated and then the second-order counterpart, with a calculated upper-bound for time-delay. Moreover, it is concluded that with such event-triggered protocols, practical scaled consensus can be achieved without the exhibition of Zeno behavior. At last, simulations are shown to support the results.  相似文献   

19.
The paper proposes an impulsive consensus protocol to solve the consensus problem of the second-order multi-agent systems with fixed and switching topologies. Some sufficient conditions are obtained for the states of follower agents converging to the state of leader asymptotically. Two numerical simulations are also given to verify the effectiveness of the theoretical analysis.  相似文献   

20.
In this paper, the leader-following distributed consensus control problem is addressed for general linear multi-agent systems with heterogeneous uncertain agent dynamics and switched leader dynamics. Different from most existing results with a single linear time-invariant (LTI) leader dynamics, the leader dynamics under consideration is composed by a family of LTI models and a switching logic governing the switches among them, which is capable of generating more diverse and sophisticated reference signals to accommodate more complicated consensus control design tasks. A novel distributed adaptive switching consensus protocol is developed by incorporating the model reference adaptive control mechanism and arbitrary switching control technique, which can be synthesized by following a two-layer hierarchical design scheme. A numerical example has been used to demonstrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号