共查询到20条相似文献,搜索用时 0 毫秒
1.
Dongxin Ma Chen Zhang Prof. Yong Qiu Dr. Lian Duan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(44):15888-15895
A novel series of four sublimable cationic iridium(III) complexes have been prepared with 1,10‐phenanthroline derivatives as ancillary ligands and the same negative counter‐ion, tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, which has a large steric hindrance and widely dispersed charges, thereby increasing the ionic radii, reducing the electrostatic interaction, and thus improving the volatility. Their structural, photophysical, electrochemical, and thermal properties have been fully characterized. Upon excitation, these compounds show polychromic emission varying from green to orange in solution, which are blue‐shifted in the solid state to different extents due to π–π conjugate effects in the ancillary ligands and the resulting molecular aggregation. OLEDs fabricated by vacuum evaporation deposition demonstrated desirable device performance with high efficiency and brightness, exhibiting various electroluminescent colors dependent upon doping concentration. 相似文献
2.
Xiaofeng Wang Zuobang Sun Kuangyu Ding Peirong Qiang Prof. Wenqing Zhu Prof. Sheng Han Prof. Fan Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(61):13966-13972
Small organic molecules with finely tunable physical properties are highly desired for the fabrication of low-cost and high-performance organic electronic devices. In this work, the syntheses of a series of T-shaped NBN-embedded dibenzophenalene derivatives through the formation of a key brominated intermediate in a stoichiometrically controlled reaction are presented. The geometric and electronic structures of these T-shaped molecules can be simply tailored by attaching substituents along the direction perpendicular to the molecular main backbones, resulting in desirable physical properties, such as high thermal stability with a decomposition temperature of more than 350 °C, and intensive blue luminescence with a quantum yield up to 0.62. Organic light-emitting diode devices fabricated with such molecules as the emitting layer release pure blue light with CIE (0.16, 0.12). 相似文献
3.
Jing Huang Runli Tang Tian Zhang Prof. Qianqian Li Prof. Gui Yu Shuyi Xie Prof. Yunqi Liu Dr. Shanghui Ye Prof. Jingui Qin Prof. Zhen Li 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(18):5317-5326
Two aggregation‐induced emission active luminogens (TPE–pTPA and TPE–mTPA) were successfully synthesized. For comparison, another six similar compounds were prepared. Because of the introduced hole‐dominated triphenylamine (TPA), fluorene groups with high luminous efficiency, and unconjugated linkages, the π conjugation length of the obtained luminogens is effectively restricted to ensure their blue emission. The undoped organic light‐emitting diodes based on TPE–pTPA and TPE–mTPA exhibited blue or deep‐blue emissions, low turn‐on voltages (3 V), and high electroluminescence efficiencies with Lmax, ηC,max, and ηP,max values of up to 26 697 cd m?2, 3.37 cd A?1, and 2.40 Lm W?1. 相似文献
4.
Xuzhou Tian Jiyao Sheng Shitong Zhang Shengbing Xiao Ying Gao Haichao Liu Bing Yang 《Molecules (Basel, Switzerland)》2021,26(15)
Deep blue luminescent materials play a crucial role in the organic light-emitting diodes (OLEDs). In this work, a novel deep blue molecule based on hybridized local and charge-transfer (HLCT) excited state was reported with the emission wavelength of 423 nm. The OLED based on this material achieved high maximum external quantum efficiency (EQE) of 4% with good color purity. The results revealed that the locally-excited (LE)-dominated HLCT excited state had obvious advantages in short wavelength and narrow spectrum emission. What is more, the experimental and theoretical combination was used to describe the excited state characteristic and to understand photophysical property. 相似文献
5.
Peng Tao Yanqin Miao Hua Wang Bingshe Xu Qiang Zhao 《Chemical record (New York, N.Y.)》2019,19(8):1531-1561
Organic electroluminescence is considered as the most competitive alternative for the future solid‐state displays and lighting techniques owing to many advantages such as self‐luminescence, high efficiency, high contrast, high color rendering index, ultra‐thin thickness, transparency, flat and flexibility, etc. The development of high‐performance organic electroluminescence has become the continuing focus of research. In this personal account, a brief overview of representative achievements in our study on the design of highly efficient novel organic light‐emitting materials (including fluorescent materials, phosphorescent iridium(III) complexes and conjugated polymers bearing phosphorescent iridium(III) complex) and high‐performance device structures together with working principles are given. At last, we will give some perspectives on this fascinating field, and also try to provide some potential directions of research on the basis of the current stage of organic electroluminescence. 相似文献
6.
Tingting Huang Prof. Dr. Di Liu Prof. Dr. Jingyang Jiang Prof. Dr. Wenfeng Jiang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(46):10926-10937
Quinoxaline (Q), pyrido[2,3-b]pyrazine (PP) and pyrido[3,4-b]pyrazine (iPP) are used as electron acceptors (A) to design a series of D–π–A-type light-emitting materials with different donor (D) groups. By adjusting the molecular torsion angles through changing D from carbazole (Cz) to 10-dimethylacridine (DMAC) or 10H-phenoxazine (PXZ) for a fixed A, the luminescence is tuned from normal fluorescence to thermally activated delayed fluorescence (TADF). By gradually enhancing the intramolecular charge-transfer extent through combining different D and A, the emission color is continuously and regularly tuned from pure blue to orange–red. Organic light-emitting diodes (OLEDs) containing these compounds as doped emitters exhibit bright electroluminescence with emission colors covering the entire visible-light range. An external quantum efficiency (ηext) of 1.2 % with excellent color coordinates of (0.16, 0.07) is obtained for the pure-blue OLED of Q-Cz. High ηext values of 12.9 (35.9) to 16.7 % (51.9 cd A−1) are realized in the green, yellow, and orange–red TADF OLEDs. All PP- and iPP-based TADF emitters exhibit superior efficiency stabilities to that of analogues of Q. This provides a practical strategy to tune the emission color of Q, PP, and iPP derivatives with the same molecular skeletons over the entire visible-light range. 相似文献
7.
Do Sik Kim Kyung Hyung Lee Prof. Jun Yeob Lee Dr. Wan Pyo Hong 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(50):11765-11771
A series of blue thermally activated delayed fluorescent (TADF) emitters of 1′′-(4,6-diphenyl-1,3,5-triazin-2-yl)-9,9′′-diphenyl-9H,9′′H-3,3′:9′,4′′-tercarbazole (TrzCz1) and 3′,6′-di-tert-butyl-1-(4,6-diphenyl-1,3,5-triazin-2-yl)-9-phenyl-9H-4,9′-bicarbazole (TrzCz2) were synthesized through a molecular design approach to decorate phenylcarbazole with a donor and an acceptor. The 1- and 4-positions of the phenylcarbazole core were modified with a diphenyltriazine acceptor and a bicarbazole or tert-butylcarbazole donor, respectively, through a synthetic strategy to introduce Br at the 1-position and F at the 4-position. The TrzCz1 and TrzCz2 emitters showed maximum photoluminescence emission bands at λ=443 and 433 nm, which were blueshifted relative to those of the corresponding TADF emitters with the same donor and acceptor, respectively. In the device application, the TrzCz1 emitter showed a maximum external quantum efficiency of 22.4 %, with a color coordinate of (0.16, 0.21), and the TrzCz2 emitter showed a maximum external quantum efficiency of 9.9 %, with a color coordinate of (0.14, 0.09). This work proved that the design strategy of decorating phenylcarbazole with a donor and an acceptor is effective at blueshifting the emission of TADF emitters. 相似文献
8.
Rong-Huei Yi Guan-Yang Liu Yan-Teng Luo Wei-Yu Wang Han-Yu Tsai Chien-Hsiang Lin Hsiang-Ling Shen Dr. Chih-Hao Chang Dr. Chin-Wei Lu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(51):12998-13008
A series of dicyano-imidazole-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain pure blue-emitting organic light-emitting diodes (OLEDs). The targeted molecules used dicyano-imidazole with a short-conjugated system as the electron acceptor to strong intermolecular π-π interactions, and provide a relatively shallow energy level of the lowest unoccupied molecular orbital (LUMO). The cyano group was selected to improve imidazole as an electron acceptor due to its prominent electron-transporting characteristics. Four different electron donors, that is, 9,9-dimethyl-9,10-dihydroacridine (DMAC), 10H-spiro(acridine-9,9’-fluoren) (SPAC), and 9,9-diphenyl-9,10-dihydroacridine (DPAC), were used to alternate the highest occupied molecular orbital (HOMO) energy level to tune the emission color further. The crowded molecular structure in space makes the electron donor and acceptor almost orthogonal, reducing the energy gap (ΔEST) between the first excited singlet (S1) and the triplet (T1) states and introducing significant TADF property. The efficiencies of the blue-emissive devices with imM-SPAC and imM-DMAC obtained in this work are the highest among the reported imidazole-based TADF-OLEDs, which are 13.8 % and 13.4 %, respectively. Both of Commission Internationale de l′Eclairage (CIE) coordinates are close to the saturated blue region at (0.17, 0.18) and (0.16, 0.19), respectively. Combining these tailor-made TADF compounds with specific device architectures, electroluminescent (EL) emission from sky-blue to deep-blue could be achieved, proving their great potential in EL applications. 相似文献
9.
Dr. Meng Li Prof. Dr. Chuan-Feng Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(7):e202103550
A promising strategy of thermally activated delayed fluorescence (TADF) sensitized circularly polarized luminescence (CPL) has been proposed for improving the electroluminescence efficiencies of circularly polarized fluorescent emitters. Compared with chiral TADF emitters which suffer from the dilemma of small ΔEST accompanied by small kr, the TADF-sensitized CPL (TSCP) strategy using TADF molecules as sensitizers and CP-FL molecules as emitters might be the most promising method to construct high-performance circularly polarized organic light-emitting diodes (CP-OLEDs). Consequently, by taking advantage of the theoretically 100 % exciton utilization of TADF sensitizers, especially, by designing CP-FL emitters with high PLQY, narrow FWHM and large glum values, TSCP-type CP-OLEDs with excellent overall performances can be realized. 相似文献
10.
Kailong Wu Tao Zhang Lisi Zhan Dr. Cheng Zhong Prof. Shaolong Gong Prof. Nan Jiang Prof. Zheng‐Hong Lu Prof. Chuluo Yang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(31):10860-10866
A series of green butterfly‐shaped thermally activated delayed fluorescence (TADF) emitters, namely PXZPM , PXZMePM , and PXZPhPM , are developed by integrating an electron‐donor (D) phenoxazine unit and electron‐acceptor (A) 2‐substituted pyrimidine moiety into one molecule via a phenyl‐bridge π linkage to form a D –π–A–π–D configuration. Changing the substituent at pyrimidine unit in these emitters can finely tune their emissive characteristics, thermal properties, and energy gaps between the singlet and triplet states while maintaining frontier molecular orbital levels, and thereby optimizing their optoelectronic properties. Employing these TADF emitters results in a green fluorescent organic light‐emitting diode (OLED) that exhibits a peak forward‐viewing external quantum efficiency (EQE) close to 25 % and a slow efficiency roll‐off characteristic at high luminance. 相似文献
11.
12.
Yue Lu Dr. Niamh McGoldrick Dr. Frances Murphy Dr. Brendan Twamley Xiaoneng Cui Dr. Colm Delaney Dr. Gearóid M. Ó Máille Junsi Wang Prof. Dr. Jianzhang Zhao Prof. Dr. Sylvia M. Draper 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(32):11349-11356
A series of IrIII complexes, based on 1,10‐phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross‐coupling reactions using a “chemistry‐on‐the‐complex” method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light‐harvesting group. Intense UV/Vis absorption was observed for the IrIII complexes with two light‐harvesting groups at the 3‐ and 8‐positions of the phenanthroline. The asymmetric IrIII complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time‐resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet‐oxygen (1O2) sensitization and triplet‐triplet annihilation (TTA)‐based upconversion were explored. Highly efficient TTA upconversion (ΦUC=28.1 %) and 1O2 sensitization (ΦΔ=97.0 %) were achieved for the asymmetric IrIII complex, which showed intense absorption in the visible region (λabs=482 nm, ?=50900 m ?1 cm?1) and had a long‐lived triplet excited state (53.3 μs at RT). 相似文献
13.
以二(二苯基磷酰)胺(Htpip)作为辅助配体,与主配体2-(2,4-二氟苯基)异喹啉和2-(4-三氟甲基苯基)异喹啉合成了红光铱磷光配合物Ir(dfpiq)2tpip和Ir(tfmpiq)2tpip并得到了晶体结构。在CH2Cl2中发射光谱主要是MLCT发射,峰位置分别为622和600 nm,量子效率分别为15%和17%,而HOMO/LUMO能级分别是-4.80/-2.58和-4.73/-2.57 eV。在1150~1300(V·cm-1)1/2电场范围,Ir(dfpiq)2tpip的电子迁移率为6.61~8.49×10-6cm2·V-1·s-1,Ir(tfmpiq)2tpip的电子迁移率为6.08~6.61×10-6cm2·V-1·s-1。ITO/TAPC(60 nm)/Ir-complex(15wt%):CBP(50 nm)/TPBi(60 nm)/LiF(1 nm)/Al(100 nm)中基于Ir(dfpiq)2tpip的器件最大安培效率和功率效率分别为4.71 cd·A-1和1.82 lm·W-1,12.0 V时达到的最大亮度为18 195 cd·m-2。基于Ir(tfmpiq)2tpip的器件最大安培效率和功率效率分别为3.47 cd·A-1和1.51 lm·W-1,12.4 V时达到的最大亮度为14 676 cd·m-2。 相似文献
14.
Iridium‐Catalyzed Enantioselective Hydrogenation of Oxocarbenium Ions: A Case of Ionic Hydrogenation
Tilong Yang Yongjie Sun Heng Wang Zhenyang Lin Jialin Wen Xumu Zhang 《Angewandte Chemie (International ed. in English)》2020,59(15):6108-6114
Ionic hydrogenation has not been extensively explored, but is advantageous for challenging substrates such as unsaturated intermediates. Reported here is an iridium‐catalyzed hydrogenation of oxocarbenium ions to afford chiral isochromans with high enantioselectivities. A variety of functionalities are compatible with this catalytic system. In the presence of a catalytic amount of the Brønsted acid HCl, an α‐chloroether is generated in situ and subsequentially reduced. Kinetic studies suggest first‐order kinetics in the substrate and half‐order kinetics in the catalyst. A positive nonlinear effect, together with the half kinetic order, revealed a dimerization of the catalyst. Possible reaction pathways based on the monomeric iridium catalyst were proposed and DFT computational studies revealed an ionic hydrogenation pathway. Chloride abstraction and the cleavage of dihydrogen occur in the same step. 相似文献
15.
1,2‐Dihydrophosphete: A Platform for the Molecular Engineering of Electroluminescent Phosphorus Materials for Light‐Emitting Devices 下载免费PDF全文
Hui Chen Simon Pascal Zuoyong Wang Dr. Pierre‐Antoine Bouit Zisu Wang Yinlong Zhang Denis Tondelier Bernard Geffroy Prof. Régis Réau Prof. François Mathey Prof. Zheng Duan Prof. Muriel Hissler 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(31):9784-9793
The discovery and molecular engineering of novel electroluminescent materials is still a challenge in optoelectronics. In this work, the development of new π‐conjugated oligomers incorporating a dihydrophosphete skeleton is reported. Variation of the substitution pattern of 1,2‐dihydrophosphete derivatives and chemical modification of their P atoms afford thermally stable derivatives, which are suitable emitters to construct organic light‐emitting diodes (OLEDs). The optical and electrochemical properties of these new P‐based oligomers have been investigated in detail and are supported by DFT calculations. The OLED devices exhibit good performance and current‐independent CIE coordinates. 相似文献
16.
Luminescence‐Functionalized Metal–Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors 下载免费PDF全文
Cheng‐Yi Xiong Dr. Hai‐Jun Wang Wen‐Bin Liang Ya‐Li Yuan Prof. Dr. Ruo Yuan Prof. Dr. Ya‐Qin Chai 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(27):9825-9832
Novel luminescence‐functionalized metal–organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4′‐dicarboxylicacid‐2,2′‐bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3]2+) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a “signal‐on” ECL immunosensor for the detection of N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence‐functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3]2+, but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL?1 to 25 ng mL?1 and a relatively low detection limit of 1.67 pg mL?1 (signal/noise=3). The results indicated that luminescence‐functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis. 相似文献
17.
Zhenmei Huang Zhengyang Bin Rongchuan Su Feng Yang Jingbo Lan Jingsong You 《Angewandte Chemie (International ed. in English)》2020,59(25):9992-9996
The development of efficient non‐doped organic light‐emitting diodes (OLEDs) is highly desired but very challenging because of a severe aggregation‐caused quenching effect. Herein, we present a heptagonal diimide acceptor (BPI), which can restrict excessive intramolecular rotation and inhibit close intermolecular π–π stacking due to well‐balanced rigidity and rotatability of heptagonal structure. The BPI‐based luminogen ( DMAC‐BPI ) shows significant aggregation‐induced delayed florescence with an extremely high photoluminescence quantum yield (95.8 %) of the neat film, and the corresponding non‐doped OLEDs exhibit outstanding electroluminescence performance with maximum external quantum efficiency as high as 24.7 % and remarkably low efficiency roll‐off as low as 1.0 % at 1000 cd m?2, which represents the state‐of‐the‐art performance for non‐doped OLEDs. In addition, the synthetic route to DMAC‐BPI is greatly streamlined and simplified through oxidative Ar?H/Ar?H homo‐coupling reaction. 相似文献
18.
Bing Yang Dr. Soo‐Kang Kim Hai Xu Young‐Il Park Houyu Zhang Dr. Cheng Gu Fangzhong Shen Dr. Chunlei Wang Dandan Liu Xiaodong Liu Prof. Muddasir Hanif Shi Tang Weijun Li Feng Li Dr. Jiacong Shen Prof. Jong‐Wook Park Prof. Yuguang Ma Prof. 《Chemphyschem》2008,9(17):2601-2609
Herein, we describe the molecular electronic structure, optical, and charge‐transport properties of anthracene derivatives computationally using density functional theory to understand the factors responsible for the improved efficiency and stability of organic light‐emitting diodes (OLEDs) with triphenylamine (TPA)‐substituted anthracene derivatives. The high performance of OLEDs with TPA‐substituted anthracene is revealed to derive from three original features in comparison with aryl‐substituted anthracene derivatives: 1) the HOMO and LUMO are localized separately on TPA and anthracene moieties, respectively, which leads to better stability of the OLEDs due to the more stable cation of TPA under a hole majority‐carrier environment; 2) the more balanceable hole and electron transport together with the easier hole injection leads to a larger rate of hole–electron recombination, which corresponds to the higher electroluminescence efficiency; and 3) the increasing reorganization energy for both hole and electron transport and the higher HOMO energy level provide a stable potential well for hole trapping, and then trapped holes induce a built‐in electric field to prompt the balance of charge‐carrier injection. 相似文献
19.
The platinum(Ⅱ) terpyridyl acetylide complex [Pt(terpy)(C≡CR)]ClO4 (terpy=2,2‘ : 6‘2“-terpyridine, R=CH2CH2CH3) (1) was incorporated into Nation membranes. At high loading the dry membranes exhibit intense photoluminescence with λmax at 707 nm from the ^3MMLCT state, which was not observed in fluid solution. Upon exposure to the vapor of polar volatile organic compounds (VOC), this photoluminescence was significantly red-shifed. This process was fully reversible when the VOC-incorporated membrane was dried in air. The dramatic and reversible changes in the emission spectra made the Nation-supported complex as an interesting sensor candidate for polar VOC. 相似文献
20.
Qian Wang Prof. Chao Wang Kunpeng Zheng Binbin Wang Prof. Zhong Wang Prof. Chuanhui Zhang Prof. Xiaojing Long 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(15):e202320037
With the oxygen conversion efficiency of metal-free carbon-based fuel cells dramatically improved, the building blocks of covalent organic frameworks (COFs) raised principal concerns on the catalytic active sites with indistinct electronic states. Herein, to address this issue, we demonstrate COFs for oxygen reduction reaction (ORR) by regulating the edge-hanging thiophene units, and the molecular geometries are further modulated via positional thiophene isomerization strategy, affording isomeric COF-α with 2-substitution and COF-β with 3-substitution on the frameworks. The electronic states and intermediate adsorption ability are well-regulated through geometric modification, resulting in controllable chemical activity and local density of π-electrons. Notably, the introduction of thiophene units with different substitution positions into a pristine pure carbon-based COF model COF-Ph achieves excellent activity with a half-wave potential of 0.76 V versus the reversible hydrogen electrode, which is higher than most of those metal-free or metal-based electrocatalysts. Utilizing the combination of theoretical prediction and in situ Raman spectra, we show that the isomeric thiophene skeleton ( COF-α and COF-β ) can induce the dangling unit activation, accurately identifying the pentacyclic-carbon (thiophene α-position) adjacent to sulfur atom as active sites. The results suggest that the isomeric dangling groups in COFs are suitable for the ORR with promising geometry construction. 相似文献