首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of metal‐mediated cages, having multiple cavities, was synthesized from PdII cations and tris‐ or tetrakis‐monodentate bridging ligands and characterized by NMR spectroscopy, mass spectrometry, and X‐ray methods. The peanut‐shaped [Pd3L14] cage deriving from the tris‐monodentate ligand L1 could be quantitatively converted into its interpenetrated [5Cl@Pd6L18] dimer featuring a linear {[Pd‐Cl‐]5Pd} stack as an unprecedented structural motif upon addition of chloride anions. Small‐angle neutron scattering (SANS) experiments showed that the cigar‐shaped assembly with a length of 3.7 nm aggregates into mono‐layered discs of 14 nm diameter via solvophobic interactions between the hexyl sidechains. The hepta‐cationic [5Cl@Pd6L18] cage was found to interact with polyanionic oligonucleotide double‐strands under dissolution of the aggregates in water, rendering the compound class interesting for applications based on non‐covalent DNA binding.  相似文献   

2.
Spherical assemblies of the type [PdnL2n]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [PdnLnL′n]2n+, for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3CN)4](BF4)2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8L8L′8]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.  相似文献   

3.
The incorporation of functional groups into the cavity of discrete supramolecular coordination cages (SCCs) will bring unique functions and applications. Here, three dicarboxylate ligands (H2 L1 Cl, H2 L2 Cl and H2 L3 Cl) containing N-heterocyclic carbene (NHC) precursors as linkers were introduced to construct SCCs by combining with two C3-symmertic (CpZr)3(μ3-O)(μ2-OH)3 clusters as three-connect vertices, resulted in a series of rugby-like V2E3 (V=vertex, E=edge) type homoleptic cages ( SCC-1 , SCC-2 and SCC-3 ). However, V4E6-type tetrahedral cages ( SCC-4 and SCC-5 ), incorporating six Au-NHC moieties, were obtained when the corresponding NHC-gold(I) functionalized ligands (H2 L1 Au, H2 L2 Au) were applied. For the first time, we present a trackable CpZr-involved cage to cage conversion to generate a heteroleptic V2E3 cage ( SCC-6 ) from two homoleptic cages ( SCC-2 and SCC-5 ) with different geometries of V2E3 and V4E6. The heteroleptic assembly SCC-6 can also be formed upon a subcomponent displacement strategy. The structural transformation and reassembly processes were detected and monitored by 1H NMR spectroscopy and electrospray-ionization mass spectrometry. The formation of heteroleptic assembly was further supported by single crystal X-ray diffraction analysis. Moreover, homoleptic cage SCC-2 possesses a trigonal bipyramidal cationic cavity allowing the encapsulation of a series of sulfonate anionic guests.  相似文献   

4.
5.
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding.  相似文献   

6.
Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond‐like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal‐imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C? H???X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions.  相似文献   

7.
Host–guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using 19F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4L6 2 , Fe8L12 3 , and Fe4L4 4 , each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest.  相似文献   

8.
《化学:亚洲杂志》2017,12(24):3203-3207
The self‐assembly process of a Pd12L24 sphere was revealed by a quantitative approach (quantitative analysis of self‐assembly process: QASAP) quantifying all the substrates, the products, and the observable intermediates, indicating that the Pd12L24 sphere is produced through several pathways. Firstly, Pdn L2n (n= 6, 8, and 9), which are perfectly closed structures smaller than the Pd12L24 sphere, and a mixture of intermediates not observed by NMR ( Int ) were produced. Next, the sphere was assembled from intra‐/intermolecular reaction of a certain class of Int (path A) and from the coordination of free pyridyl groups in Int to the PdII center of Pdn L2n (n= 6, 8, and 9) (path B). While capping the free pyridyl groups in Int with PdII ions perfectly inhibited the sphere formation, the addition of free L to Int accelerated the formation of the sphere.  相似文献   

9.
The cyclo‐P4 complexes [CpRTa(CO)24‐P4)] (CpR: Cp′′=1,3‐C5H3tBu2, Cp′′′=1,2,4‐C5H2tBu3) turned out to be predestined for the formation of hollow spherical supramolecules with non‐classical fullerene‐like topology. The resulting assemblies constructed with CuX (X=Cl, Br) showed a highly symmetric 32‐vertex core of solely four‐ and six‐membered rings. In some supramolecules, the inner cavity was occupied by an additional CuX unit. On the other hand, using CuI, two different supramolecules with either peanut‐ or pear‐like shapes and outer diameters in the range of 2–2.5 nm were isolated. Furthermore, the spherical supramolecules containing Cp′′′ ligands at tantalum are soluble in CH2Cl2. NMR spectroscopic investigations in solution revealed the formation of isomeric supramolecules owing to the steric hindrance caused by the third tBu group on the Cp′′′ ligand. In addition, a 2D coordination polymer was obtained and structurally characterized.  相似文献   

10.
Multiple orthogonal coordinative interactions were utilized to construct heterometal‐decorated tetrahedral cages from in situ formed trinuclear ZrIV clusters through the combination with other metal ions such as CuII or PdII. Through effective use of the hard/soft acid/base principle, the orthogonal self‐assembly process of Zr‐bpydc‐CuCl2 (H2bpydc=2,2‐bipyridine‐5,5‐dicarboxylic acid) can be finely controlled using three strategies: post‐synthetic metallization, a stepwise metalloligand approach, or a one‐pot reaction.  相似文献   

11.
We describe a electrochemically driven molecular shuttle, in which shuttling takes place by means of fullerene radical‐anion recognition that results in a very low operation potential (E1/2=?0.580 V vs. decamethylferrocene). This has been achieved by introducing positive charges on the macrocycle, which strengthen the existing π–π interactions between the macrocycle and the electrogenerated fullerene radical anion by means of an electrostatic component. In addition, the synthesis of such a molecular shuttle has been accomplished by developing a new synthetic approach that exploits the controlled translocation of the macrocycle as a selective protecting group.  相似文献   

12.
The self‐assembly of highly stable zirconium(IV)‐based coordination cages with aggregation induced emission (AIE) molecular rotors for in vitro bio‐imaging is reported. The two coordination cages, NUS‐100 and NUS‐101, are assembled from the highly stable trinuclear zirconium vertices and two flexible carboxyl‐decorated tetraphenylethylene (TPE) spacers. Extensive experimental and theoretical results show that the emissive intensity of the coordination cages can be controlled by restricting the dynamics of AIE‐active molecular rotors though multiple external stimuli. Because the two coordination cages have excellent chemical stability in aqueous solutions (pH stability: 2–10) and impressive AIE characteristics contributed by the molecular rotors, they can be employed as novel biological fluorescent probes for in vitro live‐cell imaging.  相似文献   

13.
A modular approach has been developed for the synthesis of rigid linear di‐ and tritopic ligands based on a fused [6]polynorbornane scaffold. The design provides up to three sites for installing functionality, including both “ends” and a “central” position with the advantage that each region can be independently addressed during synthesis. To illustrate the utility of the approach, both pyridyl and picolyl units were incorporated to provide six new ligands, with centers and ends either matched or mismatched. Indeed, both [M2L4] cages with endohedral functionality and [M3L4] complexes were cleanly produced from these ligands with assembled structures confirmed by using 1H NMR spectroscopy, HRMS, and molecular modelling.  相似文献   

14.
喻娜  丁慧敏  汪成 《化学进展》2016,28(12):1721-1731
近年来,作为一类具有永久空腔结构的三维有机分子,有机分子笼引起了科研工作者的广泛关注,在超分子化学中(主要是主客体相互作用)扮演着重要角色。早期研究中通常采用不可逆法制备有机分子笼,往往存在反应步骤多、分离提纯复杂、合成难度大等问题。为了有效解决上述问题,研究人员将动态共价化学引入到有机分子笼的合成中,从而简单、高效地制备出一系列不同的有机分子笼。关于有机分子笼的应用研究也在不断拓展中。研究发现,有机分子笼不仅在分子识别、分子反应器等方面存在广阔的应用前景,而且其可以通过自组装形成多孔材料,在气体吸附、分离等领域展现了巨大的应用潜能。本文中,我们综述了有机分子笼在合成方法(主要基于动态共价化学反应)及应用研究方面的最新进展。  相似文献   

15.
The self‐aggregation behavior of C60 fullerenes that bear two octadecyl chains (lipid 1 ) as well as the structures and electrochemical properties of cast films of 1 are described. We also examined the self‐aggregation behavior in organic solvents of three previously reported compounds: C60 with three each of hexadecyl (lipid 2 ), tetradecyl (lipid 3 ), or dodecyl (lipid 4 ) chains. The fullerene lipids in alcohols spontaneously formed spherical aggregates, whose diameters are related to the alkyl‐chain lengths, concentrations of the fullerene lipids, and the solvent polarity. The morphologies of the aggregates showed temperature dependence. Cast films of 1 formed multimolecular bilayer structures that undergo a phase transition typical of lipid bilayer membranes. The electrochemistry of cast films of 1 on an electrode in aqueous medium exhibits temperature dependence.  相似文献   

16.
17.
Coordination-driven self-assembly is an efficient approach for constructing complicated molecules with the aid of reversible bond formation. However, constructing topologically complicated interlocked systems and their formation studies remain challenging tasks. The formation of two water-soluble hexanuclear interlocked cages by multicomponent self-assembly of a flexible triimidazole donor ( L1 ) and a rigid tripyridyl donor ( L2 ) based on a triazine core in combination with 90° cis-blocked PdII and PtII acceptors is reported here. Formation of interlocked systems having a composition of M6( L1 )2( L2 )2 (M=Pd or Pt) becomes feasible through cavity-induced self-recognition of two similar units having a composition of M3( L1 )( L2 ). Self-sorting of two independently prepared cages of [M3( L1 )2] and [M6( L2 )4] in aqueous medium leads to the formation of interlocked systems, and their formation was monitored by time-dependent 1H NMR spectroscopy. Self-recognition of L1 by [M6( L2 )4] or L2 by [M3( L1 )2] leads to the formation of interlocked systems, as confirmed from 1H NMR spectroscopic titrations of L1 with cages {M6( L2 )4} and L2 with {M3( L1 )2}, respectively. Both the interlocked cages of Pd and Pt are highly stable, and formation of either system is equally probable as observed from the treatments of Pd3( L1 )2 with Pt6( L2 )4 or Pt3( L1 )2 with Pd6( L2 )4, which lead to the formation of two different self-assembled homometallic interlocked cages [Pt6( L1 )2( L2 )2+Pd6( L1 )2( L2 )2] instead of forming any other heterometallic assemblies. Formation of interlocked cages is dependent on the steric bulk of the diamine ligand bound to the metal acceptors. A N-alkyl-substituted blocking amine prefers the non-interlocked cage instead of the interlocked analogue.  相似文献   

18.
A biscalix[5]arene–C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di‐ and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell‐shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using 1H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion‐ordered 1H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di‐ or tritopic hosts and dumbbell‐shaped fullerene in the range of 1.0–10 mmol L?1, the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell‐shaped fullerene. Honeycomb sheet‐like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.  相似文献   

19.
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3L6]6+ and a distorted tetrahedron [Pd4L8]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.  相似文献   

20.
Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution‐phase synthesis of interlocked organic cages with high stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号