首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Semiconductor nanocrystals or quantum dots (QDs) are highly photoluminescent materials with unique optical attributes that are being exploited in an ever‐increasing array of applications. However, the complex surface chemistry of these finite‐sized fluorophores gives rise to a number of photophysical phenomena that can complicate their use in imaging applications. Fluorescence intermittency (FI), photoluminescence enhancement (PLE) and spectral bluing are properties of QD emission that would appear, at first sight, detrimental to quantitative measurement. Fortunately, developments in rational QD synthesis and surface modification are promising to minimize the effects of these fluorescence instabilities, while applications that exploit them are now coming to the fore. We review recent experimental and theoretical studies of FI, PLE and bluing, highlighting the benefits, as well as complications, they bring to key applications.  相似文献   

3.
Quantum dots comprise a type of quantum impurity system. The entanglement and coherence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-motion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.  相似文献   

4.
Polymer brushes have been widely applied for the reduction of both friction and non‐specific protein adsorption. In many (but not all) applications, such as contact lenses or medical devices, this combination of properties is highly desirable. Indeed, for many polymer‐brush systems, lubricity and resistance to biofouling appear to go hand in hand, with modifications of brush architecture, for example, leading to a similar degree of enhancement (or degradation) in both properties. In the case of poly(ethylene glycol) (PEG) brushes, this has been widely demonstrated. There are, however, examples where this behavior breaks down. In systems where linear brushes are covalently crosslinked during surface‐initiated polymerization (SIP), for example, the presence and the chemical nature of links between grafted chains might or might not influence biopassivity of the films, while it always causes an increment in friction. Furthermore, when the grafted‐chain topology is shifted from linear to cyclic, chemically identical brushes show a substantial improvement in lubrication, whereas their protein resistance remains unaltered. Architectural control of polymer brush films can provide another degree of freedom in the design of lubricious and biopassive coatings, leading to new combinations of surface properties and their independent modulation.  相似文献   

5.
Hydrothermal reaction of terbium( Ⅲ ) chloride with 5-sulfoisophthalic acid monosodium salt and 1, 10-phenanthroline(phen) at 415 K resulted in the formation of a novel coordination polymer, [Tb(sip) (phen) (H2O)]n( sip = 5-sulfoisophthalate trivalent anion) with a three-dimensional network structure. Each centrosymmetrically related pair of terbium ions are linked by two sip anions, forming a binuclear unit, and each binuclear unit links to four adjacent tetranuclear units, extending a two-dimensional hybrid layer at crystallographic bc plane. On the other hand,every three-terbium ion is connected by three sip anions, generating a trinuclear ring, and the trinuclear ring connects six neighboring trinuclear rings to produce another two-dimensional layer at crystallographic ab plane. Moreover, each sip anion acts as a pentadentate bridge, interconnecting two different types of layers to yield a novel three-dimensional framework.  相似文献   

6.
In this work, a new Cd(II) dimeric compound, [Cd(Cl)2(L)(H2O)]2(1, L = 2-(4-fluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), has been achieved under hydrothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction. Compound 1 crystallizes in monoclinic, space group P21/c with a = 8.944(2), b = 18.781(5), c = 10.904(3), β = 91.392(4)°, V = 1831.2(8) 3, Z = 2, C38H26Cd2F2Cl4Cl4N8O2, Mr = 1031.27, Dc = 1.870 g/cm3, F(000) = 1016, μ(Mo Ka) = 1.513 mm-1, R = 0.0532 and w R = 0.1407. Each Cd(II) atom is in an octahedral coordination sphere, completed by two nitrogen atoms from one L ligand, two chlorine anions, and one water oxygen atom. Two chlorine anions bridge two Cd(II) atoms to give a dimer [Cd(Cl)2(L)(H2O)]2. Adjacent dimers are stacked by one type of π-π interactions among L ligands to generate a 1D supramolecular chain. Further, the 1D supramolecular chains are stacked by another type of π-π interactions among L ligands to give a 2D supramolecular layer. Finally, the luminescent property of 1 has been studied in solid state at room temperature.  相似文献   

7.
Introduction Recently, several efforts have been made for thestudy of coordination polymers assembled from lantha-nide ions and aromatic polycarboxylate ligands becauseof their intriguing structural diversity and potentialapplications in several fields, s…  相似文献   

8.
Solvent-free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalenetetracarboxylic acid (Br2-NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real-world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.  相似文献   

9.
??-Amyloid (A??) is a major component of the senile plaques characteristic of Alzheimer disease (AD). Chondroitin sulfate (CS) and glycoaminoglycan (GAG) are also localized throughout the senile plaques in AD. In previous studies, the interaction of the A?? protein with CS immobilized on a chromatographic support and the role of aluminum and copper cations was studied using a molecular chromatographic approach [1, 2]. Here, we demonstrated the direct implication of OH· radical formation on this binding via a novel analytical procedure. The binding of A?? amyloid on CS was accompanied by an OH· radical uptake. The A?¨CCS complex was stabilized by the OH· radical via the creation of about one to two hydrogen bonds. The addition in the medium of a radical scavenger allowed decreasing the A??/CS association and thus confirmed the positive role of these compounds in amyloidosis.  相似文献   

10.
The new manganese(Ⅱ) coordination compound, [Mn(Cl)_2(L)_2](1, L = 11-fluorodipyrido[3,2-a:2?,3?-c]phenazine), has been achieved under hydrothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction. 1 crystallizes in monoclinic system, space group C2/c with a = 8.419(2), b = 12.286(2), c = 28.451(6) ?, β = 95.889(3)°, V =2927.5(10) ?~3, Z = 4, C_(36) H_(16) MnF_2 Cl_2 N_8, M_r = 724.41, D_c = 1.644 g/cm~3, F(000) = 1460, μ(Mo Ka)= 0.691 mm~(-1), R = 0.0445 and wR = 0.0982. Adjacent compounds are stacked by one type of π-πinteraction among L ligands to generate a 1D supramolecular chain. Further, the 1D supramolecular chains are stacked by another type of π-π interaction among L ligands to give a 2D supramolecular layer. Moreover, the C-F···π interactions between the carbon atom of the L ligand and the pyrazine ring of the adjacent L ligand further stabilize the supramolecular layer of 1. In addition, natural bond orbital(NBO) analysis has been calculated by the B3LYP/LANL2DZ method, which shows obvious covalent interaction between the coordinated atoms and Mn(Ⅱ) ion.  相似文献   

11.
On–off switching and molecular logic in fluorescent molecules are associated with what chemical inputs can do to the structure and dynamics of these molecules. Herein, we report the structure of a naphthalene derivative, the fashion of its binding to β-cyclodextrin and DNA, and the operation of logic possible using protons, cyclodextrin, and DNA as chemical inputs. The compound crystallizes out in a keto-amine form, with intramolecular N−H⋅⋅⋅O bonding. It shows stepwise formation of 1:1 and 1:2 inclusion complexes with β-cyclodextrin. The aminopentenone substituents are encapsulated by β-cyclodextrin, leaving out the naphthalene rings free. The binding constant of the β-cyclodextrin complex is 512 m−1. The pKa value of the guest molecule is not greatly affected by the complexation. Dual input logic operations, based on various chemical inputs, lead to the possibility of several molecular logic gates, namely NOR, XOR, NAND, and Buffer. Such chemical inputs on the naphthalene derivative are examples of how variable signal outputs based on binding can be derived, which, in turn, are dependent on the size and shape of the molecule.  相似文献   

12.
Reaction of meso-tetraphenylporpholactone with hydrazine converts the lactone moiety to an N-aminolactam. It also reduces the opposite pyrrolic moiety of both the starting material and the N-aminolactam, generating chlorin-like chlorolactone and N-aminochlorolactam, respectively. Reductive N-N cleavage of the N-aminoporpholactam generates the parent porpholactam.  相似文献   

13.
14.
Are all solvation models equal? An in‐depth comparison of mixed implicit/explicit solvation models shows that while both the implicit and explicit (QM/MM–FEP) solvation models can reproduce activation free energies for phosphate diester hydrolysis in solution with high accuracy, the use of a mixed solvation model tends to be unreliable for modelling phosphate hydrolysis in solution.

  相似文献   


15.
The singlet potential‐energy surface (PES) of the system involving the atoms H, X, and E (the (H, X, E) system) in which X=N–Bi and E=C–Pb has been explored at the CCSD(T)/TZVPP and BP86/TZ2P+ levels of theory. The nature of the X? E bonding has been analyzed with charge‐ and energy‐partitioning methods. The calculations show that the linear isomers of the nitrogen systems lin ‐HEN and lin ‐HNE are minima on the singlet PES. The carbon compound lin ‐HCN (HCN=hydrogen cyanide) is 14.9 kcal mol?1 lower in energy than lin ‐HNC but the heavier group 14 homologues lin ‐HEN (E=Si–Pb) are between 64.8 and 71.5 kcal mol?1 less stable than the lin ‐HNE isomers. The phosphorous system (H, P, E) exhibits significant differences concerning the geometry and stability of the equilibrium structures compared with the nitrogen system. The linear form lin ‐HEP of the former system is much more stable than lin ‐HPE . The molecule lin ‐HCP is the only minimum on the singlet PES. It is 78.5 kcal mol?1 lower in energy than lin ‐HPC , which is a second‐order saddle point. The heavier homologues lin ‐HPE , in which E=Si–Pb, are also second‐order saddle points, whereas the bent ‐HPE structures are the global minima on the PES. They are between 10.3 (E=Si) and 36.5 kcal mol?1 (E=Pb) lower in energy than lin ‐HEP . The bent ‐HPE structures possess rather acute bending angles H‐P‐E between 60.1 (E=Si) and 79.7° (E=Pb). The energy differences between the heavier group 15 isomers lin ‐HEX (X=P–Bi) and the bent structures bent ‐HXE become continuously smaller. The silicon species lin ‐HSiBi is even 3.1 kcal mol?1 lower in energy than bent ‐HBiSi . The bending angle H‐X‐E becomes more acute when X becomes heavier. The drastic energy differences between the isomers of the system (H, X, E) are explained with three factors that determine the relative stabilities of the energy minima: 1) The different bond strength between the hydrogen bonds H? X and H? E. 2) The electronic excitation energy of the fragment HE from the X 2Π ground state to the 4Σ? excited state, which is required to establish a E≡X triple bond in the molecules lin ‐HEX . 3) The strength of the intrinsic X? E interactions in the molecules. The trends of the geometries and relative energies of the linear, bent, and cyclic isomers are explained with an energy‐decomposition analysis that provides deep insight into the nature of the bonding situation.  相似文献   

16.
A series of ten palladium? bis(pyridine) complexes, as well as their corresponding platinum complexes, have been synthesized. The pyridine ligands in each series carried different σ‐donor and/or π‐acceptor/donor substituents at the para‐position of their pyridine rings. These complexes were analysed by NMR spectroscopy, X‐ray crystallography, (tandem) MS, and isothermal titration calorimetry (ITC) to validate whether these methods allowed us to obtain a concise and systematic picture of the relative and absolute thermodynamic stabilities of the complexes, as determined by the electronic effects of the substituents. Interestingly, the NMR spectroscopic data hardly correlated with the expected substituent effects but the heteronuclear platinum? phosphorus coupling constants did. Crystallographic data were found to be blurred by packing effects. Instead, tandem MS and ITC data were in line with each other and followed the expected trends.  相似文献   

17.
Lipoxygenases are mononuclear non-heme metalloenzymes that regio- and stereospecifically convert 1,4-pentadiene subunit-containing fatty acids into alkyl peroxides. The rate-determining step is generally accepted to be hydrogen atom abstraction from the pentadiene subunit of the substrate by an active metal(III)-hydroxide species to give a metal(II)-water species and an organic radical. All known plant and animal lipoxygenases contain iron as the active metal; recently, however, manganese was found to be the active metal in a fungal lipoxygenase. Reported here are the synthesis and characterization of a mononuclear Mn(III) complex, [Mn(III)(PY5)(OH)](CF(3)SO(3))(2) (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)pyridine), that reacts with hydrocarbon substrates in a manner most consistent with hydrogen atom abstraction and provides chemical precedence for the proposed reaction mechanism. The neutral penta-pyridyl ligation of PY5 endows a strong Lewis acidic character to the metal center allowing the Mn(III) compound to perform this oxidation chemistry. Thermodynamic analysis of [Mn(III)(PY5)(OH)](2+) and the reduced product, [Mn(II)(PY5)(H(2)O)](2+), estimates the strength of the O-H bond in the metal-bound water in the Mn(II) complex to be 82 (+/-2) kcal mol(-)(1), slightly less than that of the O-H bond in the related reduced iron complex, [Fe(II)(PY5)(MeOH)](2+). [Mn(III)(PY5)(OH)](2+) reacts with hydrocarbon substrates at rates comparable to those of the analogous [Fe(III)(PY5)(OMe)](2+) at 323 K. The crystal structure of [Mn(III)(PY5)(OH)](2+) displays Jahn-Teller distortions that are absent in [Mn(II)(PY5)(H(2)O)](2+), notably a compression along the Mn(III)-OH axis. Consequently, a large internal structural reorganization is anticipated for hydrogen atom transfer, which may be correlated to the lessened dependence of the rate of substrate oxidation on the substrate bond dissociation energy as compared to other metal complexes. The results presented here suggest that manganese is a viable metal for lipoxygenase activity and that, with similar coordination spheres, iron and manganese can oxidize substrates through a similar mechanism.  相似文献   

18.
A series of covalent ferrocene–BODIPY–fullerene triads with the ferrocene groups conjugated to the BODIPY π-system and the fullerene acceptor linked at the boron hub by a common catecholpyrrolidine bridge were prepared and characterized by 1D and 2D NMR, UV/Vis, steady-state fluorescence spectroscopy, high-resolution mass spectrometry, and, for one of the derivatives, X-ray crystallography. Redox processes of the new compounds were investigated by electrochemical (CV and DPV) methods and spectroelectrochemistry. DFT calculations indicate that the HOMO in all triads was delocalized between ferrocene and BODIPY π-system, the LUMO was always fullerene-centered, and the catechol-centered occupied orbital was close in energy to the HOMO. TDDFT calculations were indicative of the low-energy, low-intensity charge-transfer bands originated from the ferrocene–BODIPY core to fullerene excitation, which explained the similarity of the UV/Vis spectra of the ferrocene–BODIPY dyads and ferrocene–BODIPY–fullerene triads. Photophysical properties of the new triads as well as reference BODIPY–fullerene and ferrocene–BODIPY dyads were investigated by pump-probe spectroscopy in the UV/Vis and NIR spectral regions following selective excitation of the BODIPY-based antenna. Initial charge transfer from the ferrocene to the BODIPY core was shown to outcompete sub-100 fs deactivation of the excited state mediated by the catechol bridge. However, no subsequent electron transfer to the fullerene acceptor was observed. The initial charge separated state relaxes by recombination with a time constant of 150–380 ps.  相似文献   

19.
Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phytocannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1 and CB2 receptors widely described in the central nervous system and peripheral tissues. All phytocannabinoids have been studied for their protective actions towards different biological mechanisms, including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis, and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell growth and survival. The aim of this review was to report the current knowledge about the action of phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We will also report the known molecular mechanisms responsible for such positive effects. Finally, we will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.  相似文献   

20.

The title compound has been synthesized under mild hydrothermal conditions (autogenous pressure, 368 K, 24 h). It crystallizes in the P2 1 /c (N°14) space group with a = 15.9323(4) Å b = 9.6203(1)Å c = 8.8024(2)Å β = 103.828(2)°; V = 1310,07(5) Å 3 ; and Z = 4. Its structure, determined from X-ray single-crystal data (1266 reflexions with I > 2σ (I), R = 7.4%, Rw = 20.6%), consists of inorganic [Zn(HPO 4 )Cl]? sheets lying parallel to the (100) plane between which are located the protonated organic molecules. The infrared spectroscopy and the thermogravimetric analysis are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号