首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   

2.
CuII catalyst is less efficient at room temperature for C−S cross-coupling. C−S cross-coupling by CuII catalyst at room temperature is not reported; however, doping of copper with molybdenum metal has been realized here to be more efficient for C−S cross-coupling in comparison to general CuII catalyst. The doped catalyst CuMoO4 nanoparticle is found to be more efficient than copper. The catalyst works under mild conditions without any ligand at room temperature and is recyclable and effective for a wide range of thiols and haloarenes (ArI, ArBr, ArF) from milligram to gram scale. The copper-based bimetallic catalyst is developed and recognized for C−S cross-coupling of haloarenes with alkyl and aryl thiols.  相似文献   

3.
A mixed CuI/CuIIcatalyst based on magnetic cysteine functionalized graphene oxide (CuI/II@Cys-MGO) was prepared and used for the azidonation reaction of aryl boronic acids and one-pot synthesis of 1,4-diaryl −1,2,3-triazoles. Aryl azides were obtained in good yields and short reaction times via cross-coupling of aryl boronic acids with sodium azide in the presence of CuII catalytic species in this catalytic system. The azide-alkyne cycloaddition reaction was catalyzed by CuI catalytic species in CuI/II@Cys-MGO nanocomposite.  相似文献   

4.
Intermolecular acceptorless dehydrogenative coupling of silanes with arene C-H bonds and intramolecular coupling of silanes with aryl and alkyl C-H bonds occur in good yield in the presence of 5 mol % of TpMe2PtMe2H (TpMe2 = hydridotris(3,5-dimethylpyrazolyl)borate) and related platinum(IV) complexes. The intermolecular reactions of arenes occurred with both trialkyl and dialkylaryl silanes. Intramolecular reactions of dialkylsilylalkylarenes occurred at aryl C-H bonds, and reactions of tributylsilane or dibutylphenylsilane occurred intramolecularly at the aliphatic, primary C-H bond. The reactions of arenes occurred preferentially at the least sterically hindered C-H bonds and preferentially with more electron-poor arenes. Crossover experiments and the lack of reactivity of the arylsilanes with H2 imply that the dehydrogenative silylation of arenes can be irreversible, even in a closed reaction vessel.  相似文献   

5.
Whereas aryl(trialkyl)silanes are considered to be ideal organometallic reagents for cross‐coupling reactions owing to their stability, low toxicity, solubility, and easy accessibility, they are generally inert under typical cross‐coupling conditions. Disclosed herein is a palladium/copper catalytic system that enables the cross‐coupling of trimethyl, triethyl, tert‐butyldimethyl, and triisopropyl aryl silanes with aryl bromides. This process is applicable to the sequential C?H and C?Si bond arylation of thiophenes and the synthesis of poly(thiophene–fluorene)s.  相似文献   

6.
Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups was carried out smoothly in supercritical carbon dioxide under oxygen atmosphere when polystyrene-supported benzoquinone (PS-BQ) or CuII (CuI) chloride was employed as cocatalyst. The higher selectivity was achieved, without any chlorinated by-product detected, when using PS-BQ instead of CuII (or CuI) chloride. PS-BQ could be recycled with excellent catalytic activity remaining after each simple filtration. Chlorine ion was demonstrated to be a promoter. The different acetalization mechanisms were revealed by the subtle relationship of chlorine ion and benzoquinone (BQ) to the catalytic activity of PdCl2/PS-BQ, PdII-CuCl2 or Pd(OAc)2/PS-BQ.  相似文献   

7.
In situ generated aryl, heteroaryl, alkyl, or benzylic polyfunctional zinc reagents obtained by the addition of zinc and LiCl to the corresponding organic iodides undergo smooth Pd(0)-catalyzed cross-coupling reactions with aryl bromides, chlorides, and triflates in the presence of PEPPSI as a catalyst. This procedure avoids the manipulation of water and air-sensitive organozinc reagents and produces cross-coupling products in high yields.  相似文献   

8.
Room-temperature Ni(0)-catalyzed cross-coupling reactions of aryl arenesulfonates with arylboronic acids are described. The Ni(0) catalyst, derived from Ni(COD)2 and PCy3, proved to be a general one for the Suzuki-Miyaura cross-coupling of a variety of aryl arenesulfonates. The mild reaction condition, the readily availability of the catalyst, and excellent coupling yields make aryl arenesulfonates potentially useful substrates in organic synthesis.  相似文献   

9.
A method for electrosynthesis of heteropolynuclear biquinoline-containing CuI and PdII complexes using sacrificial Cu and Pd anodes was developed. The sequence of anode dissolution (first Pd and then Cu) was important for the synthesis of the complex. The opposite sequence of dissolution resulted in oxidation of the initially formed CuI ions to CuII. The obtained CuI and PdII complexes with polymer ligands had high catalytic activity in the reaction of aryl halides with phenylacetylene giving rise to a C(sp2)-C(sp) bond. The yield of arylphenylacetylene in the presence of 0.1 mol.% of Pd catalyst in relation to the starting halide was 50–90% depending on the nature of the aryl halide.  相似文献   

10.
Palladium-catalyzed alkene-directed cross-coupling of aryl iodide with another aryl halide through C−H arylation opens a unique avenue for unsymmetrical biaryl-derived molecules. However, homo-coupling of aryl iodides often erodes the overall synthetic efficiency. Reported herein is a highly chemoselective Pd0-catalyzed alkyne-directed cross-coupling of aryl iodides with bromophenols, which was subsequently followed by phenol dearomatization to furnish a very attractive [2+2+1] spiroannulation. Notably, possible homo-coupling of aryl iodides was not observed at all. Mechanistic studies indicated that a five-membered aryl/vinyl palladacycle most likely accounts for promoting the key step of biaryl cross-coupling.  相似文献   

11.
通过Domino脱HCl/Pd(OAc)2催化的Heck反应实现了β-氯代烷基芳基酮、酯和酰胺与卤代芳烃的交叉偶联反应,高效合成了查尔酮类化合物。利用原位生成烯酮为中间体进行反应的策略,减少副反应的发生,从而提高反应的效率。该方法对各种官能团的容忍性好,为从氯代烷烃出发直接合成查尔酮类化合物提供了一条新途径。  相似文献   

12.
《Tetrahedron: Asymmetry》2014,25(22):1450-1455
Novel organocatalysts combining carbohydrate and N-formyl-l-valine derivatives were prepared by CuII-catalyzed diazo transfer and CuI-catalyzed azide–alkyne 1,3-dipolar cycloaddition CuAAC click chemistry. It was found that the carbohydrate-based valine-derived formamide organocatalyst had high catalytic activity for the asymmetric reduction of imines with trichlorosilane. The reduction can proceed at room temperature in toluene in high yield (up to 98%) and with excellent enantioselectivity (up to 94%). ‘CuAAC’ click chemistry is a bridge to link N-formyl-l-valine derived organocatalysts with carbohydrates.  相似文献   

13.
The development of a highly efficient and practical protocol for the direct C?N coupling of H‐tetrazole and boronic acid was presented. A careful and patient optimization of a variety of reaction parameters revealed that this conventionally challenge reaction could indeed proceed efficiently in a very simple system, that is, just by stirring the tetrazoles and boronic acids under oxygen in the presence of different CuI or CuII salts with only 5 mol % loading in DMSO at 100 °C. Most significantly, the reaction could proceed very smoothly in a regiospecific manner to afford the 2,5‐disubstituted tetrazoles in high to excellent yields. A mechanistic study revealed that both tetrazole and DMSO are crucial for the generation of catalytically active copper species in the reaction process in addition to their role as reactant and solvent, respectively. It is demonstrated that in the reaction cycle, the CuI catalyst could be oxidized to CuII by oxygen to form a [CuT2D] complex (T=tetrazole anion; D=DMSO) through an oxidative copper amination reaction. The CuII complex thus formed was confirmed to be the real catalytically active copper species. Namely, the CuII complex disproportionates to aryl CuIII and CuI in the presence of boronic acid. Facile elimination of the CuIII species delivers the C?N‐coupled product. The results presented herein not only provide a reliable and efficient protocol for the synthesis of 2,5‐disubstituted tetrazoles, but most importantly, the mechanistic results would have broad implications for the de novo design and development of new methods for Cu‐catalyzed coupling reactions.  相似文献   

14.
Abstract

Previous work has shown that the unstable five co-ordinate phospholes (1; R=alkoxy, R′=alkyl) produced in the reaction of trialkyl phosphites with a two molar equivalent of dimethyl acetylenedicarboxylate can be converted into the novel phospholes (2; R=alkoxy) by treatment with hydrogen bromide at low temperature. We have now shown that a similar approach can be used to generate the phospholes (2; R=alkyl, aryl) by using dialkyl alkylphosphonites or dialkyl arylphosphonites rather than trialkyl phosphites. However, the reduced stability of the phosphorane intermediates (1; R=alkyl, aryl, R′=alkyl) relative to those produced in the trialkyl phosphite reactions means that these trapping reactions are difficult to carry out successfully.  相似文献   

15.
Multicomponent Mannich reactions through C−H bond activation are described. These transformations allowed for the straightforward generation of densely substituted benzylic and homo-benzylic amines in good yields. The reaction involves a reaction between two transient species: an organometallic species, generated by transition-metal-catalyzed sp2 or sp3 C−H bond activation and an in situ generated imine. The use of an acetal as an aldehyde surrogate was found essential for the reaction to proceed. The process could be successfully applied to RhIII-catalyzed sp2 C−H bond functionalization and extended to CuII-catalyzed sp3 C−H bond functionalization.  相似文献   

16.
A Cu(OTf)2-catalyzed simple synthetic approach for highly substituted 1-alkoxy imidazole has been described. This protocol involves (3 + 2) cycloaddition of oximino carbenoids with organo nitriles. This method has wide substrate scope and tolerates alkyl, aryl, substituted aryl, vinyl, and ester nitriles.  相似文献   

17.
Alkyl transition metal reagents are being increasingly used for alkylations in organic synthesis. They have various advantages over alkyllithium and alkyl-magnesium reagents including higher selectivity, lower basicity, and—as long as the transition metal is not in its highest oxidation state—their willingness to undergo oxidative addition with electrophiles. Alkyl derivatives of FeII and CoII, which are not stabilized by special ligands but still can be easily handled, are in many cases superior to the well-known alkyl–CuI and -MnII reagents and can also undergo unexpected reactions. The introduction of alkyl-cyanoate complexes of FeII and CoII, the cyanide ligands of which (in contrast to neutral π-acidic ligands) do not reduce the reactivity, has led to further advances. Reaction mechanisms will be discussed and comparisons will be made with alkylating reagents containing CuI, MnII, NiII, or TiIV as well as with Pd-catalyzed coupling reactions. Furthermore, it will be shown that super-ate FeII complexes are almost certainly the reactive species in highly selective catalytic alkylations.  相似文献   

18.
Jin-Heng Li  Qi-Ming Zhu  Ye-Xiang Xie 《Tetrahedron》2006,62(47):10888-10895
The scope and limitations of the Pd(OAc)2/DABCO (1,4-diaza-bicyclo[2.2.2]octane)-catalyzed Suzuki-Miyaura cross-coupling reactions have been demonstrated. The results showed that the effect of solvent had a fundamental influence on the reaction. In the presence of Pd(OAc)2 and DABCO, both aryl bromides and aryl chlorides all worked well with arylboronic acids to form biaryls, heteroaryl-aryls, and biheteroaryls in moderate to excellent yields using DMF as the solvent. Additionally, the reactions of aryl bromides were conducted under relatively mild conditions.  相似文献   

19.
Bi L  Georg GI 《Organic letters》2011,13(20):5413-5415
2,3-Dihydropyridin-4(1H)-ones undergo direct C-H functionalization at C5 in the palladium(II)-catalyzed Hiyama reaction, using triethoxy(aryl)silanes and dimethylphenylsilanol. The reagent CuF(2) has a dual role in the reactions with triethoxy(aryl)silanes. It is a source of fluoride to activate the silane in the Hiyama reaction and also serves as the reoxidant to convert Pd(0) to Pd(II) in the catalytic cycle.  相似文献   

20.
Dioxygen activation by copper complexes is a valuable method to achieve oxidation reactions for sustainable chemistry. The development of a catalytic system requires regeneration of the CuI active redox state from CuII. This is usually achieved using extra reducers that can compete with the CuII(O2) oxidizing species, causing a loss of efficiency. An alternative would consist of using a photosensitizer to control the reduction process. Association of a RuII photosensitizing subunit with a CuII pre‐catalytic moiety assembled within a unique entity is shown to fulfill these requirements. In presence of a sacrificial electron donor and light, electron transfer occurs from the RuII center to CuII. In presence of dioxygen, this dyad proved to be efficient for sulfide, phosphine, and alkene catalytic oxygenation. Mechanistic investigations gave evidence about a predominant 3O2 activation pathway by the CuI moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号