首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Directing the self-assembly of organic building blocks with 2D templates has been a promising method to create molecular superstructures having unique physicochemical properties. In this work the on-surface self-assembly of simple ditopic functional molecules confined inside periodic nanotemplates was modeled by means of the lattice Monte Carlo simulation method. Two types of confinement, that is honeycomb porous networks and parallel grooves of controlled diameter and width were used in the calculations. Additionally, the effect of (pro)chirality of the adsorbing molecules on the outcome of the templated self-assembly was examined. To that end, enantiopure and racemic assemblies were studied and the resulting structures were identified and classified. The obtained findings demonstrated that suitable tuning of the structural parameters of the templates enables directing the self-assembly towards linear and cyclic aggregates with controlled size. Moreover, chiral resolution of the molecular conformers using honeycomb networks with adjusted pore size was found possible. Our theoretical predictions can be helpful in designing structured surfaces to direct self-assembly and polymerization of organic functional building blocks.  相似文献   

2.
The production of high-performance ceramics requires the protection of powder particles against chemical reactions. Hydrolysis and oxidation of nanoscaled non-oxidic powders can be impeded by a coating consisting of a dense adsorbed layer of amphiphilic molecules. Using Monte Carlo simulations for a coarse grained model the adsorption equilibrium of differently shaped amphiphiles in apolar and polar solvents is investigated. For estimating the protection capability of the adsorbed surfactant film in aqueous environment we study the diffusion of small hydrophilic particles through the adsorbed surfactant film. The surfactants considered as coating agents differ in the number of hydrocarbon tails. It is found that amphiphiles with a single hydrocarbon tail or at most two branches are more suitable to protect particle surfaces than amphiphiles with three or four branches, although the adsorption energy of amphiphiles with many branches is higher.  相似文献   

3.
4.
    
In this contribution we propose a simple model of adsorption of a binary (racemic) mixture on a chiraly templated surface. As an example, the adsorption of a liquid mixture of enantiomers on a chiral stationary phase (CSP) is considered. In particular, we study the effect of the lateral interactions in the adsorbed phase on the kinetic and equilibrium isotherms of the enantiomers. Additionally, we investigate the influence of the composition of the surface on the performance of the CSP in the presence of the lateral interactions. To that end, the adsorption of the mixture is modeled by using Monte Carlo simulations as well as by applying an analytical approach involving rate equations coupled with the Mean Field Approximation (MFA). The predictions of the theory are found to be in good agreement with the results of the simulations.  相似文献   

5.
6.
采用改进的键长涨落空穴扩散算法对平板狭缝中不对称两嵌共聚高分子熔体的微相分离进行了Monte Carlo模拟。模拟结果表明:在吸引壁条件下,靠近壁面处将形成平等于壁面的层状相;在弱吸引壁条件下,靠近壁面处将形成垂直于壁面的层状相;不对称共聚物在远离壁面处有丰富的微区形态。从结构因子上分析可知,弱吸引壁条件下不对称共聚物的结构比强吸引壁条件下更接近对称共聚物。  相似文献   

7.
Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse‐grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well‐controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.  相似文献   

8.
9.
A Grand Canonical Monte Carlo simulation method is used to determine the adsorption isotherms, interaction energies, entropies, and density distribution of a Lennard-Jones fluid adsorbed in smooth-walled nanopores of varying size and shape. We specifically include very crowded pores, where packing effects are important. Differences in the isotherms of slit, cylindrical, and spherical nanopores of varying sizes can be explained in terms of the adsorbate-adsorbate interaction energy, the adsorbate-pore interaction energy, and the density profiles, which influence the balance between the former and the latter energy contributions. The expectation from low loading studies that the most energetically favorable adsorbate-pore interactions maximize adsorption is not borne out at intermediate and higher loadings. Instead, the relationships between adsorbed amounts and pore size and shape are found to be strong functions of the depth and steepness of the external potential, the extent to which adsorbate-adsorbate repulsion establishes short range fluid order, and the accessible pore volume. This study has implications for high pore density processes in nanoporous materials, such as zeolite catalysis, separations, and templating in zeolite synthesis.  相似文献   

10.
    
We describe the implementation of a general and flexible Monte Carlo (MC) module for the program CHARMM, which is used widely for modeling biomolecular systems with empirical energy functions. Construction and use of an almost arbitrary move set with only a few commands is made possible by providing several predefined types of moves that can be combined. Sampling can be enhanced by noncanonical acceptance criteria, automatic optimization of step sizes, and energy minimization. A systematic procedure for improving MC move sets is introduced and applied to simulations of two peptides. The resulting move sets allow MC to sample the configuration spaces of these systems much more rapidly than Langevin dynamics. The rate of convergence of the difference in free energy between ethane and methanol in explicit solvent is also examined, and comparable performances are observed for MC and the Nosé-Hoover algorithm. Its ease of use combined with its sampling efficiency make the MC module in CHARMM an attractive alternative for exploring the behavior of biomolecular systems.  相似文献   

11.
Summary: The effects of copolymer sequence distribution on the dynamics of a copolymer in a homopolymer matrix are studied using computer simulations within the framework of the bond‐fluctuation model on blends containing low concentrations (10%) of copolymers dispersed in a homopolymer matrix. The sequence distribution of the two copolymer components was changed while maintaining the overall copolymer composition at 50/50. Our results indicate that copolymers with disordered sequence distributions exhibit dynamics that are faster than that of a homopolymer melt, while those with ordered sequence distributions exhibit a tendency to form aggregates that lead to slower dynamics as well as phase separation. Analysis of the structure suggests that copolymers with an alternating sequence distribution form large aggregates that are short‐lived, while diblocks form permanent micelle‐like structures. Analysis of the local composition around a copolymer molecule indicates that aggregation between copolymer chains has a direct impact on the local composition. This in turn has a significant impact on system dynamics. Our results indicate that the dynamics of random, random‐blocky, and alternating copolymers are nearly identical and are faster than that of a homopolymer melt. However, alternating copolymers form aggregates and hence are not uniformly distributed throughout the matrix phase. Thus, alternating copolymers are at a disadvantage in their ability to be effective compatibilizers. From a dynamic perspective, copolymers with random and random‐blocky copolymers seem to be ideal compatibilizers since they are distributed uniformly throughout the system and move rapidly through the matrix phase.

Snapshots of aggregates of alternating copolymer chains. Dark and bright spheres represent A and B monomers, respectively.  相似文献   


12.
ABSTRACT

We have studied the properties of biaxial particles interacting via an anisotropic pair potential, involving second-rank quadrupolar and third-rank octupolar coupling terms, using Monte Carlo simulation. The particles occupy the sites of a 2D square lattice and the interactions are restricted to nearest neighbours. The system exhibits spontaneous chiral symmetry breaking from an isotropic phase to a chiral modulated nematic phase, composed of ambidextrous chiral domains. When twofold axes of quadrupolar and octupolar tensors coincide this modulated phase appears to be the ambidextrous cholesteric phase with pitch comparable to a few lattice spacings. The associated phase transition is first order.  相似文献   

13.
胡君  巨勇 《化学进展》2011,23(1):181-191
具有独特立体结构的三萜化合物是一类重要的生物活性天然产物,在消炎、降血脂、保肝护肾、抗菌、抗肿瘤、抗真菌等方面有着重要药用价值。利用其独特手性结构、亲脂性、生物活性以及生物相容性等特性,设计合成新型功能分子,可作为药物载体,发挥其识别功能以及用于医用材料等方面具有重要的作用。本文介绍了近年来以三萜为骨架设计合成的新型功能分子在离子、分子识别和自组装性能方面研究现状及其潜在的应用前景。  相似文献   

14.
    
Monte Carlo computer simulations have been performed for model polymers containing randomly distributed spherical filler particles (20% in volume) with diameter between 4 times and 28 times the transverse diameter of the chains. By analyzing the results in conjunction with those of previous simulations, a few simple rules are deduced allowing to predict approximately the molecular arrangements in these complex systems.

Schematic two‐dimensional picture of the mutual arrangements of filler particles and chains predicted for system M12.  相似文献   


15.
    
A simple lattice model has been used to study the formation of multilayer films by fluids with orientation-dependent interactions on solid surfaces. The particles, composed of two halves (A and B) were allowed to take on one of six different orientations. The interaction between a pair of differently oriented neighboring particles was assumed to depend on the degrees to which their A and B parts overlap. Here, we have assumed that the AA interaction was strongly attractive, the AB interaction was set to zero, while the BB interaction was varied between 0 and 1.0. The ground state properties of the model have been determined for the systems being in contact with non-selective and selective walls over the entire range of BB interaction energies between 0 and 1.0. It has been demonstrated that the structure of multilayer films depends on the strengths of surface potential felt by differently oriented particles and the interaction between the B halves of fluid particles. Finite temperature behavior has been studied by Monte Carlo simulation methods. It has been shown that the bulk phase phase diagram is qualitatively independent of the BB interaction energy, and has the swan neck shape, since the high stability of the dense ordered phase suppresses the possibility of the formation of disordered liquid-like phase. Only one class of non-uniform systems with the BB interaction set to zero has been considered. The results have been found to be consistent with the predictions stemming form the ground state considerations. In particular, we have found that a complete wetting occurs at any temperature, down to zero. Furthermore, the sequences of layering transitions, and the structure of multilayer films, have been found to be the same as observed in the ground state.  相似文献   

16.
This article describes a method for solving the geometric closure problem for simplified models of nucleic acid structures by using the constant bond lengths approximation. The resulting chain breakage/closure equations, formulated in the space of variable torsion and bond angles, are easy to solve, and have only two solutions. The analytical simplicity is in contrast with the high complexity of the closure problem in the torsion angle space with at most 16 solutions, which has been dealt with by several authors and was solved analytically by Wu and Deem (J. Chem. Phys. 1999, 111, 6625). The discussion on the choice of variables and associated Jacobians is focussed on the question of how conformational equilibration is affected in Monte Carlo simulations of molecular systems. In addition to the closure of the phosphate backbone, it is necessary to also solve the closure problem for the five-membered flexible furanose sugar ring. Explicit closure equations and the resulting Jacobians are given both for the complete four-variable model of the furanose ring and simulations in the phase-amplitude space of the five-membered ring, which are based on the approximate two-variable model of furanose introduced by Gabb et al. (J. Comput. Chem. 1995, 16, 667). The suggested closure algorithm can be combined with collective variables defined by translations and rotations of the monomeric nucleotide units. In comparison with simple internal coordinate moves, the resulting concerted moves describe local structural changes that have high acceptance rates and enable fast conformational equilibration. Appropriate molecular models are put forward for prospective Monte Carlo simulations of nucleic acids, but can be easily adapted to other biomolecular systems, such as proteins and lipid structures in biological membranes.  相似文献   

17.
    
胡文兵 《高分子科学》2013,31(11):1463-1469
Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging,parallel and diverging spaces between two neutrally repulsive solid plates are reported.The spatial profiles of polymer velocity and deformation along the course of such a laminar extensional flow have been carefully analyzed.The results appear consistent with experimental observations in literature.In the entrance and exit regions,a linear dependence of chain extension upon the excess velocity has been observed.Moreover,an annexed shear flow and a molecular-dispersion effect are found.The results demonstrate a useful strategy of this approach to study polymer flows and bring new insights into the non-Newtonian-fluid behaviors of bulk polymers in capillary rheometers and micro-fluidic devices.  相似文献   

18.
Presented are some models developed by physicists to describe dynamics of two-dimensional (2D) systems. Using these models we introduce certain notions which are now also widely used outside the original domain of applications. The models include percolation, cellular automata, exemplified by the Langton’s ant. In the latter the interaction between the dynamical system and the underlying geometric structure is shown. Finally, two examples are given of a physicists’ view of biological evolution. The first one is the Bak and Sneppen model and connected with it the notion of self-criticality. The second one is a model of a population in a changing environment with a possibility of colonizing a new habitat.  相似文献   

19.
    
We present simulation results for the phase behavior of a single chain for a flexible lattice polymer model using the Wang-Landau sampling idea. Applying this new algorithm to the problem of the homopolymer collapse allows us to investigate not only the high temperature coil–globule transition but also an ensuing crystallization at lower temperature. Performing a finite size scaling analysis on the two transitions, we show that they coincide for our model in the thermodynamic limit corresponding to a direct collapse of the random coil into the crystal without intermediate coil–globule transition. As a consequence, also the many chain phase diagram of this model can be predicted to consist only of gas and crystal phase in the limit of infinite chain length. This behavior is in agreement with findings on the phase behavior of hard-sphere systems with a relatively short-ranged attractive square well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2542–2555, 2006  相似文献   

20.
    
陈进 《高分子科学》2010,(3):311-322
Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths Nb, arm lengths Na and arm densities m are carried out to study the elastic behavior of comb-like polymer chains. The radius of gyration, the shape factors and bond length in different cases during elastic process are calculated, and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains. But the arm density m affects the chain conformation non-monotonously. Some thermodynamic properties are also studied. Average Helmholtz free energy and elastic force f all increase with elongation ratio #61548; for all chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号