首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
于鹏  李景虹 《应用化学》2018,35(9):1093-1101
电化学分解水(Water Splitting)是获得高纯度氢能的重要手段。 因此,开发具有高活性低成本的电化学析氢反应(Hydrogen Evolution Reaction,HER)催化剂成为目前能源环境的研究热点之一。 本文总结了常用于HER反应的过渡金属硫化物以及磷化物非贵金属催化剂材料的合成方法,并且概况了如何构建特殊结构的金属硫化物及磷化物材料以调高材料的HER催化反应性能的方法,为开发其它高活性的非贵金属催化剂提供依据。  相似文献   

2.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   

3.
The nanoparticle-based electrocatalysts’ performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface. To solve this problem, here, we take the hydrogen evolution reaction (HER) catalyzed by palladium nanoparticles (Pd NPs) as a model system to track the electrocatalytic activity of single Pd NPs by stochastic collision electrochemistry and ensemble electrochemistry, respectively. Compared with the nanoparticle fixed working condition, Pd NPs in the nanoparticle diffused working condition results in a 2–5 orders magnitude enhancement of electrocatalytic activity for HER at various bias potential. Stochastic collision electrochemistry with high temporal resolution gives further insights into the accurate study of NPs’ electrocatalytic performance, enabling to dramatically enhance electrocatalytic efficiency.  相似文献   

4.
电催化析氢反应作为一种绿色、可持续的制备氢气方法,受到了广泛关注. 近年来,非贵金属析氢催化剂以其低成本和相对高的催化活性取得了较快的研究进展,其中,钼基纳米催化剂目前已成为电催化析氢中最受关注的研究热点之一. 本文综述了钼基碳化物、磷化物、氮化物以及硫化物在电催化析氢反应中的催化机理和研究进展,分析了提高析氢催化活性的方法,并对钼基非贵金属催化剂的发展趋势进行了展望.  相似文献   

5.
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。  相似文献   

6.
The essence of developing a Pt-based single-atom catalyst (SAC) for hydrogen evolution reaction (HER) is the preparation of well-defined and stable single Pt sites with desired electrocatalytic efficacy. Herein, we report a facile approach to generate uniformly dispersed Pt sites with outstanding HER performance via a photochemical reduction method using polyvinylpyrrolidone (PVP) molecules as the key additive to significantly simplify the synthesis and enhance the catalytic performance. The as-prepared catalyst displays remarkable kinetic activities (20 times higher current density than the commercially available Pt/C) with excellent stability (76.3 % of its initial activity after 5000 cycles) for HER. EXAFS measurements and DFT calculations demonstrate a synergetic effect, where the PVP ligands and the support together modulate the electronic structure of the Pt atoms, which optimize the hydrogen adsorption energy, resulting in a considerably improved HER activity.  相似文献   

7.
Amorphous phosphorus nitride imide nanotubes (HPN) are reported as a novel substrate to stabilize materials containing single‐metal sites. Abundant dangling unsaturated P vacancies play a role in stabilization. Ruthenium single atoms (SAs) are successfully anchored by strong coordination interactions between the d orbitals of Ru and the lone pair electrons of N located in the HPN matrix. The atomic dispersion of Ru atoms can be distinguished by X‐ray absorption fine structure measurements and spherical aberration correction electron microscopy. Importantly, Ru SAs@PN is an excellent electrocatalyst for the hydrogen evolution reaction (HER) in 0.5 m H2SO4, delivering a low overpotential of 24 mV at 10 mA cm?2 and a Tafel slope of 38 mV dec?1. The catalyst exhibits robust stability in a constant current test at a large current density of 162 mA cm?2 for more than 24 hours, and is operative for 5000 cycles in a cyclic voltammetry test. Additionally, Ru SAs@PN presents a turnover frequency (TOF) of 1.67 H2 s?1 at 25 mV, and 4.29 H2 s?1 at 50 mV, in 0.5 m H2SO4 solution, outperforming most of the reported hydrogen evolution catalysts. Density functional theory (DFT) calculations further demonstrate that the Gibbs free energy of adsorbed H* over the Ru SAs on PN is much closer to zero compared with the Ru/C and Ru SAs supported on carbon and C3N4, thus considerably facilitating the overall HER performance.  相似文献   

8.
Much has been done to search for highly efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER), which is critical to a range of electrochemical and photoelectrochemical processes. A new, high‐temperature solution‐phase method for the synthesis of ultrathin WS2 nanoflakes is now reported. The resulting product possesses monolayer thickness with dimensions in the nanometer range and abundant edges. These favorable structural features render the WS2 nanoflakes highly active and durable catalysts for the HER in acids. The catalyst exhibits a small HER overpotential of approximately 100 mV and a Tafel slope of 48 mV/decade. These ultrathin WS2 nanoflakes represent an attractive alternative to the precious platinum benchmark catalyst and rival MoS2 materials that have recently been heavily scrutinized for the electrocatalytic HER.  相似文献   

9.
蒙阳  杨婵  彭娟 《应用化学》2020,37(7):733-745
过渡金属磷化物(TMPs)因其导电性好、稳定性高而被广泛认为是电解水析氢反应(HER)的优异电催化材料。 本文主要围绕基于过渡金属Ni、Co、Fe磷化物纳米材料的合成、表征、以及在碱性介质中的电催化HER性能等方面展开。 从中得出结论,在一定范围内,TMPs体系中富磷相越多,其在碱性电解液中的HER活性越高。 为以后的研究提供了方向。  相似文献   

10.
Rational construction of high-efficiency and low-cost catalysts is one of the most promising ways to produce hydrogen but remains a huge challenge. Herein, interface engineering and heteroatom doping were used to synthesize V-doped sulfide/phosphide heterostructures on nickel foam (V-Ni3S2/NixPy/NF) by phosphating treatment at low temperature. The incorporation of V can adjust the electronic structure of Ni3S2, expose more active sites, and protect the 3D structure of Ni foam from damage. Meanwhile, the heterogeneous interface formed between Ni3S2 and NixPy can provide abundant active sites and accelerate electron transfer. As a result, the V-Ni3S2/NixPy/NF nanosheet catalyst exhibits outstanding activity in the hydrogen evolution reaction (HER) with an extremely low overpotential of 90 mV at a current density of 10 mA cm−2 and stable durability in alkaline solution, which exceeds those most of the previously reported Ni-based materials. This work shows that rational design by interfacial engineering and metal-atom incorporation has a significant influence for efficient hydrogen evolution.  相似文献   

11.
12.
The utilization of noble-metal catalysts for the hydrogen evolution reaction (HER) provides an efficient strategy for hydrogen acquisition. However, exploring catalysts with suitable hydrogen binding strength for the HER process is always of great importance, but extremely challenging. In this work, sulfur and phosphor as electron-withdrawing elements were incorporated into carbon nanotube (CNT)-supported Ru catalysts, which were prepared through a facile solution reduction reaction and post thermo treatment. Owing to the suitable electronegativity provided by P and synergistic effects of the carbon nanotubes, the RuP2/CNT achieved a high catalytic performance as a HER electrocatalyst. This may result from the modulation effect of the electronic properties and the depressed adsorption free energy of RuP2. Electrochemical tests present that the RuP2/CNT composite exhibit a small overpotential of 58 mV at 10 mA cm−2 in acidic electrolyte. In a neutral or alkaline environment, the overpotential is 82 and 40 mV, respectively. The RuP2/CNT electrode also possesses stable durability for long-time cycling, suggesting its remarkable property as promising all-pH HER catalyst.  相似文献   

13.
Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm ) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen‐containing atmospheres. The particle size distribution estimated from the diffusion‐controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry.  相似文献   

14.
The preparation of an MoS2–polymer carbon nanodot (MoS2-PCND) hybrid material was accomplished by employing an easy and fast bottom-up synthetic approach. Specifically, MoS2-PCND was realized by the thermal decomposition of ammonium tetrathiomolybdate and the in situ complexation of Mo with carboxylic acid units present on the surface of PCNDs. The newly prepared hybrid material was comprehensively characterized by spectroscopy, thermal means, and electron microscopy. The electrocatalytic activity of MoS2-PCND was examined in the hydrogen evolution reaction (HER) and compared with that of the corresponding hybrid material prepared by a top-down approach, namely MoS2-PCND(exf-fun), in which MoS2 was firstly exfoliated and then covalently functionalized with PCNDs. The MoS2-PCND hybrid material showed superior electrocatalytic activity toward the HER with low Tafel slope, excellent electrocatalytic stability, and an onset potential of −0.16 V versus RHE. The superior catalytic performance of MoS2-PCND was rationalized by considering the catalytically active sites of MoS2, the effective charge/energy-transfer phenomena from PCNDs to MoS2, and the synergetic effect between MoS2 and PCNDs in the hybrid material.  相似文献   

15.
谢尹  张立阳  应佩晋  王佳程  孙宽  李猛 《化学进展》2021,33(9):1571-1585
电解水析氢过程中的能量消耗及析氢效率有很多影响因素,其中,电荷转移电阻和催化剂表面气泡覆盖率是最为重要的两个因素。研究发现,在电解水析氢过程中利用外场进行强化,可以有效减小电荷转移电阻和催化剂表面气泡覆盖率,如温度场能为反应过程中电荷的转移注入能量,从而降低电荷转移电阻,降低过电位;而电场能直接调整催化剂电子结构或诱导电解液离子重新分布,从而促进界面电荷转移;光场则可以诱导水分子极化,增大剩余电场,同时拉伸水分子中氢键,有利于水分解产生氢气和氧气。因此,在电解池中引入温度场、磁场、超声场、电场、超重力场和光场等外场也是降低能耗、提高析氢效率的有效策略。近年来,关于外场强化电解水的研究工作虽有报道,但研究偏少且未见系统性的归纳总结。本文即综述了近年来在电解水析氢过程中利用外场强化的研究进展。介绍各种外场强化电解水析氢的基本原理,同时通过实验案例分析各外场手段的效果,并总结外场强化电解水析氢面临的挑战及发展方向。  相似文献   

16.
Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non‐noble‐metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed‐metal alloy catalysts are well‐known, MoP|S represents a more uncommon mixed‐anion catalyst where synergistic effects between sulfur and phosphorus produce a high‐surface‐area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water‐splitting cells.  相似文献   

17.
The essence of developing a Pt‐based single‐atom catalyst (SAC) for hydrogen evolution reaction (HER) is the preparation of well‐defined and stable single Pt sites with desired electrocatalytic efficacy. Herein, we report a facile approach to generate uniformly dispersed Pt sites with outstanding HER performance via a photochemical reduction method using polyvinylpyrrolidone (PVP) molecules as the key additive to significantly simplify the synthesis and enhance the catalytic performance. The as‐prepared catalyst displays remarkable kinetic activities (20 times higher current density than the commercially available Pt/C) with excellent stability (76.3 % of its initial activity after 5000 cycles) for HER. EXAFS measurements and DFT calculations demonstrate a synergetic effect, where the PVP ligands and the support together modulate the electronic structure of the Pt atoms, which optimize the hydrogen adsorption energy, resulting in a considerably improved HER activity.  相似文献   

18.
Transition metal phosphide is regarded as one of the most promising candidates to replace noble-metal hydrogen evolution reaction (HER) electrocatalysts. Nevertheless, the controllable design and synthesis of transition metal phosphide electrocatalysts with efficient and stable electrochemical performance are still very challenging. Herein, a novel hierarchical HER electrocatalyst consisting of three-dimensional (3D) coral-like Mn-doped Co2P@an intermediate layer of Ni2P generated in situ by phosphorization on Ni foam (MnCoP/NiP/NF) is reported. Notably, both the incorporation of Mn and introduction of the Ni2P interlayer promote Co atoms to carry more electrons, which is beneficial to reduce the force of the Co−H bond and optimize the adsorption energy of hydrogen intermediate (|ΔGH*|), thereby making MnCoP/NiP/NF exhibit outstanding HER performance with onset overpotential and Tafel slope as low as 31.2 mV and 61 mV dec−1, respectively, in 1 m KOH electrolyte.  相似文献   

19.
《化学:亚洲杂志》2018,13(11):1438-1446
Two‐dimensional transition‐metal dichalcogenides have been widely studied as electrocatalysts for the hydrogen evolution reaction (HER). However, limited active sites and poor conductivity hinder their application. To solve these disadvantages, heteroatom doping has attracted wide attention because it can not only increase the active sites but also affect the intrinsic catalytic properties of the electrocatalyst. Herein, we grew vanadium‐doped WS2 nanosheets on carbon cloth (V‐WS2/CC) as an electrocatalyst for HER under acidic and alkaline conditions. With a proper vanadium doping concentration, the electrochemical surface areas of V0.065‐WS2/CC were 9.6 and 2.6 times as large as that of pure WS2 electrocatalyst under acidic and alkaline conditions, respectively. In addition, the charge‐transfer resistance also decreased with moderate vanadium doping. Based on this, the synthesized vanadium‐doped WS2 nanosheets exhibited good stability with high HER catalytic activity and could reach a current density of 10 mA cm−2 at overpotentials of 148 and 134 mV in 0.5 m H2SO4 and 1 m KOH, respectively. The corresponding Tafel slopes were 71 and 85 mV dec−1. Therefore, our synthesized vanadium‐doped WS2 nanosheets can be a promising electrocatalyst for the production of hydrogen over a wide pH range.  相似文献   

20.
Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low‐index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close‐packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low‐index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号