首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
In a recent paper, Wang et al. found an iridium‐containing compound with a formal oxidation state of 9. 5 This is the highest oxidation state ever found in a stable compound. To learn if this is the highest chemical oxidation state possible, Kohn–Sham density functional theory was used to study various compounds, including PdO42+, PtO42+, PtO3F22+, PtO4OH+, PtO5, and PtO4SH+, in which the metal has an oxidation state of 10. It was found that PtO42+ has a metastable state that is kinetically stable with a barrier height for decomposition of 31 kcal mol?1 and a calculated lifetime of 0.9 years. All other compounds studied would readily decompose to lower oxidation states.  相似文献   

4.
The transition metal tetra‐ and trinorbornyl bromide complexes, M(nor)4 (M=Fe, Co, Ni) and Ni(nor)3Br (nor=1‐bicyclo[2.2.1]hept‐1‐yl) and their homolytic fragmentations were studied computationally using hybrid density functional theory (DFT) at the B3PW91 and B3PW91‐D3 dispersion‐corrected levels. Experimental structures were well replicated; the dispersion correction resulted in shortened M?C bond lengths for the stable complexes, and it was found that Fe(nor)4 receives a remarkable 45.9 kcal mol?1 stabilization from the dispersion effects whereas the tetragonalized Co(nor)4 shows stabilization of 38.3 kcal mol?1. Ni(nor)4 was calculated to be highly tetragonalized with long Ni?C bonds, providing a rationale for its current synthetic inaccessibility. Isodesmic exchange evaluation for Fe(nor)4 confirmed that dispersion force attraction between norbornyl substituents is fundamental to the stability of these species.  相似文献   

5.
The inclusion of Hg among the transition metals is readily debated. Recently, molecular HgF4 was synthesized in a low‐temperature noble gas but the potential of Hg to form compounds beyond a +2 oxidation state in a stable solid remains unresolved. We propose high‐pressure techniques to prepare unusual oxidation states of Hg‐based compounds. Using an advanced structure search algorithm and first‐principles electronic structure calculations, we find that under high pressure Hg in Hg? F compounds transfers charge from the d orbitals to the F, thus behaving as a transition metal. Oxidizing Hg to +4 and +3 yielded the thermodynamically stable compounds HgF4 and HgF3. The former consists of HgF4 planar molecules, a typical geometry for d8 metal centers. HgF3 is metallic and ferromagnetic owing to the d9 configuration of Hg, with a large gap between its partially occupied and unoccupied bands under high pressure.  相似文献   

6.
7.
8.
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts.  相似文献   

9.
Hexanary high-entropy oxides (HEOs) were synthesized through the mechanochemical sol-gel method for electrocatalytic water oxidation reaction (WOR). As-synthesized catalysts were subjected to characterization, including X-ray diffraction (XRD), Fourier transforms infrared (FTIR) analysis, and scanning electron microscopy (SEM). All the oxide systems exhibited sharp diffraction peaks in XRD patterns indicating the defined crystal structure. Strong absorption between 400–700 cm−1 in FTIR indicated the formation of metal-oxide bonds in all HEO systems. WOR was investigated via cyclic voltammetry using HEOs as electrode platforms, 1M KOH as the basic medium, and 1M methanol (CH3OH) as the facilitator. Voltammetric profiles for both equiatomic (EHEOs) and non-equiatomic (NEHEOs) were investigated, and NEHEOs exhibited the maximum current output for WOR. Moreover, methanol addition improved the current profiles, thus leading to the electrode utility in direct methanol fuel cells as a sequential increase in methanol concentration from 1M to 2M enhanced the OER current density from 61.4 to 94.3 mA cm−2 using NEHEO. The NEHEOs comprising a greater percentage of Al, ([Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4) displayed high WOR catalytic performance with the maximum diffusion coefficient, D° (10.90 cm2 s−1) and heterogeneous rate constant, k° (7.98 cm s−1) values. These primary findings from the EC processes for WOR provide the foundation for their applications in high-energy devices. Conclusively, HEOs are proven as novel and efficient catalytic platforms for electrochemical water oxidation.  相似文献   

10.
Mononuclear nonheme MnIV?O complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The MnIV?O complexes show reactivity in oxidation reactions (hydrogen‐atom abstraction and sulfoxidation). Interestingly, one of the isomers (L1) is significantly more reactive than the other (L2), while in the corresponding FeIV?O based oxidation reactions the L2‐based system was previously found to be more reactive than the L1‐based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.  相似文献   

11.
In contrast to aryliodine(III) compounds, which have matured into a particularly attractive class of oxidants in modern synthesis, the synthetic potential of related alkyliodine(III) derivatives has remained widely underestimated. This is surprising since several unique synthetic possibilities arise directly from the low stability of their central carbon–iodine bond. In this respect, these high-oxidation-state iodine compounds resemble environmentally benign variants of the prominent metal counterparts such as those derived from palladium, nickel and copper. This Concept article summarizes the general reactivity trends in alkyliodine(III) chemistry and discusses selected examples of their strategic use as highly reactive, transient species in organic synthesis and homogeneous catalysis.  相似文献   

12.
In catalysis by metalloenzymes and in electrocatalysis by clusters related in structure and composition to the active components of such enzymes transition-metal atoms can play a central role in the catalyzed redox reactions. Changes to their oxidation states (OSs) are critical for understanding the reactions. The OS is a local property and we introduce a new, generally useful local method for determining OSs, their changes, and the associated bonding changes and electron flow. The method is based on computing optimally localized orbitals (OLOs). With this method, we analyze two cases, superoxide reductase (SOR) and a proposed hydrogen-producing model electrocatalyst [FeS(2)]/[FeFe](P), a modification of the active site of the diiron hydrogenase enzymes. Both utilize an under-coordinated Fe site where a one-electron reduction (for SOR) or a two-electron reduction (for [FeFe](P)) of the substrate occurs. We obtain the oxidation states of the Fe atoms and of their critical ligands, the changes of the bonds to those ligands, and the electron flow during the catalytic cycle, thereby demonstrating that OLOs constitute a powerful interpretive tool for unraveling reaction mechanisms by first-principles computations.  相似文献   

13.
14.
15.
16.
17.
To explore the structure–function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6‐[6‐(1,1‐di‐pyridin‐2‐yl‐ethyl)‐pyridin‐2‐ylmethyl]‐[2,2′]bipyridinyl (Py3Me‐Bpy). These modifications resulted in significantly improved stability and activity in both electro‐ and photocatalytic HER in neutral water. [Co(Py3Me‐Bpy)(OH2)](PF6)2 catalyzes the electrolytic HER at ?1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoI species. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2 released from the protonation of CoII?H species.  相似文献   

18.
HNO plays significant roles in many biological processes. Numerous heme proteins bind HNO, an important step for its biological functions. A systematic computational study was performed to provide the first detailed trends and origins of the effects of iron oxidation state, axial ligand, and protein environment on HNO binding. The results show that HNO binds much weaker with ferric porphyrins than corresponding ferrous systems, offering strong thermodynamic driving force for experimentally observed reductive nitrosylation. The axial ligand was found to influence HNO binding through its trans effect and charge donation effect. The protein environment significantly affects the HNO hydrogen bonding structures and properties. The predicted NMR and vibrational data are in excellent agreement with experiment. This broad range of results shall facilitate studies of HNO binding in many heme proteins, models, and related metalloproteins.  相似文献   

19.
20.
The influence of ligands on the spin state of a metal ion is of central importance for bioinorganic chemistry, and the production of base‐metal catalysts for synthesis applications. Complexes derived from [Fe(bpp)2]2+ (bpp=2,6‐di{pyrazol‐1‐yl}pyridine) can be high‐spin, low‐spin, or spin‐crossover (SCO) active depending on the ligand substituents. Plots of the SCO midpoint temperature (T ) in solution vs. the relevant Hammett parameter show that the low‐spin state of the complex is stabilized by electron‐withdrawing pyridyl (“X”) substituents, but also by electron‐donating pyrazolyl (“Y”) substituents. Moreover, when a subset of complexes with halogeno X or Y substituents is considered, the two sets of compounds instead show identical trends of a small reduction in T for increasing substituent electronegativity. DFT calculations reproduce these disparate trends, which arise from competing influences of pyridyl and pyrazolyl ligand substituents on Fe‐L σ and π bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号