首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electroreduction of oxygen was firstly studied on Ag/Co3O4–C in alkaline media prepared by depositing Ag on Co3O4 modified carbon (Co3O4–C). The Ag/Co3O4–C composite not only displayed relatively large electrochemical active surface area (ESA), high catalytic activity towards oxygen reduction reaction (ORR), but also exhibited good methanol tolerance and stability in alkaline media. Ag/Co3O4–C could be a valuable catalyst for ORR and be applied to alkaline fuel cells and metal–air batteries.  相似文献   

2.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。  相似文献   

3.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。  相似文献   

4.
Co3O4/γ-Al2O3 catalysts with variable Co3O4 loadings (5–20 wt%) and deposition of 15% Co3O4 on La2O3/γ-Al2O3 were prepared by wet impregnation method. La2O3-γ-Al2O3 support with variable composition of La2O3 (2–6 wt%) were prepared by co-precipitation method. All the catalysts were tested for oxidative dehydrogenation of ethylbenzene with CO2 as soft oxidant. Among the Co3O4/γ-Al2O3 catalysts, 15% Co3O4/γ-Al2O3 has shown good performance and hence this catalyst has been chosen to investigate the effect of La2O3 species. CO2 pulse chemisorption data indicate more amount of CO2 uptake over 15% Co3O4/4%La2O3/γ-Al2O3 catalyst which clearly indicates that this catalyst exhibits good performance in ethylbenzene dehydrogenation with CO2 as soft oxidant because of reverse water gas shift reaction. Temperature programmed reduction studies indicate that the Co3O4 catalysts follow two step reduction mechanism from Co3O4 to CoO and then to Co and La2O3 promotional effect is visible through facile reduction of Co3O4 species. La2O3 doping has a vital influence in getting enhanced ethylbenzene conversion, styrene yield and alleviates catalyst deactivation compared to that of unpromoted Co3O4/γ-Al2O3 catalyst. TGA studies indicate the presence low amount coke deposition during time-on-stream over 15% Co3O4/4%La2O3/γ-Al2O3 catalyst compared to 15% Co3O4/γ-Al2O3 catalyst.  相似文献   

5.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

6.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

7.
Fe−N−C catalysts with single-atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre-constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.  相似文献   

8.
This work reports the synthesis of various carbon (Vulcan XC-72 R) supported metal oxide nanostructures, such as Mn2O3, Co3O4 and Mn2O3−Co3O4 as heterogeneous Fenton-like catalysts for the degradation of organic dye pollutants, namely Rhodamine B (RB) and Congo Red (CR) in wastewater. The activity results showed that the bimetallic Mn2O3−Co3O4/C catalyst exhibits much higher activity than the monometallic Mn2O3/C and Co3O4/C catalysts for the degradation of both RB and CR pollutants, due to the synergistic properties induced by the Mn−Co and/or Mn (Co)−support interactions. The degradation efficiency of RB and CR was considerably increased with an increase of reaction temperature from 25 to 45°C. Importantly, the bimetallic Mn2O3−Co3O4/C catalyst could maintain its catalytic activity up to five successive cycles, revealing its catalytic durability for wastewater purification. The structure–activity correlations demonstrated a probable mechanism for the degradation of organic dye pollutants in wastewater, involving •OH radical as well as Mn2+/Mn3+ or Co2+/Co3+ redox couple of the Mn2O3−Co3O4/C catalyst.  相似文献   

9.
以十六烷基三甲基溴化胺(CTAB)为模板剂,通过调变CTAB浓度水热合成了氧化钴前驱体,焙烧制得棒状形貌的Co3O4,在其表面浸渍K2CO3溶液制得K改性的Co3O4催化剂,用于N2O分解。用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和O2程序升温脱附(O2-TPD)等技术对催化剂进行了表征,考察了CTAB/钴及尿素/钴物质的量比等制备参数对Co3O4催化分解N2O活性的影响。结果表明,CTAB浓度为0.05 mol/L、CTAB/钴离子物质的量比为1、尿素/钴离子物质的量比为4时,所制备的Co3O4催化剂具有较高的N2O分解活性,而K改性可以进一步提升其催化性能。K改性的Co3O4在有氧有水气氛中400℃下进行N2O分解反应,50 h后N2O转化率仍保持在91%以上。  相似文献   

10.
Reversible interconversion of water into H2 and O2, and the recombination of H2 and O2 to H2O thereby harnessing the energy of the reaction provides a completely green cycle for sustainable energy conversion and storage. The realization of this goal is however hampered by the lack of efficient catalysts for water splitting and oxygen reduction. We report exceptionally active bifunctional catalysts for oxygen electrodes comprising Mn3O4 and Co3O4 nanoparticles embedded in nitrogen‐doped carbon, obtained by selective pyrolysis and subsequent mild calcination of manganese and cobalt N4 macrocyclic complexes. Intimate interaction was observed between the metals and nitrogen suggesting residual M–Nx coordination in the catalysts. The catalysts afford remarkably lower reversible overpotentials in KOH (0.1 M ) than those for RuO2, IrO2, Pt, NiO, Mn3O4, and Co3O4, thus placing them among the best non‐precious‐metal catalysts for reversible oxygen electrodes reported to date.  相似文献   

11.
The sluggish kinetics and mutual interference of oxygen evolution and reduction reactions in the air electrode resulted in large charge/discharge overpotential and low energy efficiency of Zn-air batteries. In this work, we designed a breathing air-electrode configuration in the battery using P-type Ca3Co4O9 and N-type CaMnO3 as charge and discharge thermoelectrocatalysts, respectively. The Seebeck voltages generated from thermoelectric effect of Ca3Co4O9 and CaMnO3 synergistically compensated the charge and discharge overpotentials. The carrier migration and accumulation on the cold surface of Ca3Co4O9 and CaMnO3 optimized the electronic structure of metallic sites and thus enhanced their intrinsic catalytic activity. The oxygen evolution and reduction overpotentials were enhanced by 101 and 90 mV, respectively, at temperature gradient of 200 °C. The breathing Zn-air battery displayed a remarkable energy efficiency of 68.1 %. This work provides an efficient avenue towards utilizing waste heat for improving the energy efficiency of Zn-air battery.  相似文献   

12.
Integration of MnOx into the carbon matrix proves a viable strategy to improve the electrochemical performance of MnOx materials. Mn3O4 nanoparticle-decorated N-doped carbon composites (Mn3O4@N-doped carbon) were facilely prepared from a non-porous eight-fold interpenetrated ZnII-based MOF, which involves first synthesis of bimetallic Mn/Zn-MOF in one-pot reaction followed by direct pyrolysis at 1000 °C. In 0.1 m KOH solution, the optimal Mn3O4@N-doped carbon exhibits decent oxygen reduction activity with the onset potential (Eonset) of 0.94 V (vs. RHE) and half-wave potential (E1/2) of 0.81 V (vs. RHE), excellent methanol tolerance as well as good durability.  相似文献   

13.
Herein, we highlight redox-inert Zn2+ in spinel-type oxide (ZnXNi1−XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen-evolving condition, the newly formed VZn−O−Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N-doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm−2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high-rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1−XCo2O4 oxides after the OER test.  相似文献   

14.
In this work, various Co3O4-ZSM-5 catalysts were prepared by the microwave hydrothermal method (MH-Co3O4@ZSM-5), dynamic hydrothermal method (DH-Co3O4@ZSM-5), and conventional hydrothermal method (CH-Co3O4/ZSM-5). Their catalytic oxidation of dichloromethane (DCM) was analyzed. Detailed characterizations such as X-ray diffractometer (XRD), scanning microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of O2 (O2-TPD), temperature-programmed desorption of NH3 (NH3-TPD), diffuse reflectance infrared Fourier-transform spectra with NH3 molecules (NH3-DRIFT), and temperature-programmed surface reaction (TPSR) were performed. Results showed that with the assistance of microwave, MH-Co3O4@ZSM-5 formed a uniform core-shell structure, while the other two samples did not. MH-Co3O4@ZSM-5 possessed rich surface adsorbed oxygen species, higher ratio of Co3+/Co2+, strong acidity, high reducibility, and oxygen mobility among the three Co3O4-ZSM-5 catalysts, which was beneficial for the improvement of DCM oxidation. In the oxidation of dichloromethane, MH-Co3O4@ZSM-5 presented the best activity and mineralization, which was consistent with the characterizations results. Meanwhile, according to the TPSR test, HCl or Cl2 removal from the catalyst surface was also promoted in MH-Co3O4@ZSM-5 by their abundant Brønsted acid sites and the promotion of Deacon reaction by Co3O4 or the synergistic effect of Co3O4 and ZSM-5. According to the results of in situ DRIFT studies, a possible reaction pathway of DCM oxidation was proposed over the MH-Co3O4@ZSM-5 catalysts.  相似文献   

15.
In the work reported herein, the electrocatalytic properties of Co3O4 in hydrogen and oxygen evolution reactions have been significantly enhanced by coating a shell layer of a copper-based metal–organic framework on Co3O4 porous nanowire arrays and using the products as high-performance bifunctional electrocatalysts for overall water splitting. The coating of the copper-based metal–organic framework resulted in the hybridization of the copper-embedded protective carbon shell layer with Co3O4 to create a strong Cu−O−Co bonding interaction for efficient hydrogen adsorption. The hybridization also led to electronically induced oxygen defects and nitrogen doping to effectively enhance the electrical conductivity of Co3O4. The optimal as-prepared core–shell hybrid material displayed excellent overall-water-splitting catalytic activity that required overall voltages of 1.45 and 1.57 V to reach onset and a current density of 10 mA cm−2, respectively. This is the first report to highlight the relevance of hybridizing MOF-based co-catalysts to boost the electrocatalytic performance of nonprecious transition-metal oxides.  相似文献   

16.
《印度化学会志》2021,98(8):100116
Co3O4–SrCO3 catalysts with various Sr/Co ratios were synthesized by the coprecipitation method, and their properties were tuned by adjusting the Sr/Co molar ratio. Furthermore, the catalytic combustion of vinyl chloride (VC) was used to evaluate the catalytic activity of the Co3O4–SrCO3 catalysts. The physicochemical properties of the catalysts were studied by X-ray diffraction (XRD), infrared spectroscopy (IR), N2 sorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR) and VC temperature-programmed desorption (VC-TPD). The results showed that the Co3O4–SrCO3 catalysts exhibited composite phases of Co3O4 and SrCO3 and the presence of interactions between them. As a result, the crystallization of the Co3O4 phase for the Co3O4–SrCO3 catalysts was restrained, and the state of Co on the catalyst surface was adjusted. Furthermore, the reducibility and VC adsorption capacity of the Co3O4–SrCO3 catalysts with Sr/Co molar ratios of 0.2 and 0.4 were enhanced compared with those of the Co3O4 catalyst. Otherwise, catalyst SrCo-0.4 exhibited excellent catalytic performance, accompanied by the highest reaction rate and the lowest apparent activation energy. More importantly, the optimized SrCO3–Co3O4 catalyst showed superior catalytic performance compared with other transition metal oxides in previous literature. These results brought a new idea for promoting the activity of transition metal catalysts for the deep oxidation of chlorinated volatile organic compounds (CVOCs) by introducing alkaline-earth metal salts.  相似文献   

17.
Structure and defect control are widely accepted effective strategies to manipulate the activity and stability of catalysts. On a freestanding hierarchically porous carbon microstructure, the tuning of oxygen vacancy in the embedded hollow cobaltosic oxide (Co3O4) nanoparticles is demonstrated through the regulation of nanoscale Kirkendall effect. Starting with the embedded cobalt nanoparticles, the concentration of oxygen‐vacancy defect can vary with the degree of Kirkendall oxidation, thus regulating the number of active sites and the catalytic performances. The optimized freestanding catalyst shows among the smallest reversible oxygen overpotential of 0.74 V for catalyzing oxygen reduction/evolution reactions in 0.1 m KOH. Moreover, the catalyst shows promise for substitution of noble metals to boost cathodic oxygen reactions in portable zinc–air batteries. This work provides a strategy to explore catalysts with controllable vacancy defects and desired nano‐/microstructures.  相似文献   

18.
Iron and its binary oxides are meticulously exploited for environmental remediations. However, only limited studies have been carried out on the degradation of industrial organics by advanced oxidation process. In this study, iron oxide, cobalt oxide, and iron–cobalt binary oxides were synthesized by a modified hydrothermal method as heterogeneous Fenton-like catalysts for the removal of methylene blue (MB) from wastewaters. The oxide nanostructures were characterized by different analytical techniques. Studying the effects of various parameters such as catalyst dose, MB concentration, and H2O2 concentration, the reaction conditions were optimized to enhance the removal of MB dye. The results revealed that α-Fe2O3–Co3O4 shows much higher activity than both Co3O4 and α-Fe2O3 for the degradation of MB at room temperature and beyond. The binary α-Fe2O3–Co3O4 shows degradation efficiency of 96.4% at 65 °C within 60 min. Furthermore, the binary α-Fe2O3–Co3O4 catalyst retains its activity for up to four successive cycles. A probable mechanism is also proposed, involving the generation of ‧OH radical as well as Fe2+/Fe3+ or Co2+/Co3+ redox couple of the binary α-Fe2O3–Co3O4 catalyst.  相似文献   

19.
The behavior of porous titanium and electrodes based on it, which are activated with Pt, Au, RuO2, Co3O4, and MnO2, in 20-% LiCl solution (pH –0.4 to –0.5) is studied. On porous titanium in the potential ranges 0.1 < E< 0.5 and 0.5 < E< 1.1 V (NHE), the formation of titanium hydrides and passive oxide layers, respectively, is observed; the processes decay with time. In the ranges E< 0.1 and E> 1.1 V, the dissolved oxygen reduction and chlorine evolution, respectively, are observed on porous titanium at high overpotentials. On porous titanium activated with thin-layer Pt, Au, and RuO2coatings, the functional Evs. pH dependence, which is typical for these electrocatalysts, breaks down due to the conjugate reactions of titanium oxidation. On porous titanium activated with Co3O4and MnO2, at pH below unity, chlorine evolution is observed; its rate is limited by the chlorine mass transfer into the bulk solution. Under a gas-diffusion control, the chlorine evolution rate is determined by the diffusion of absorbed hydrogen chloride. The conditions of application of porous titanium as the support for catalytically active electrodes of electrochemical sensors in acidic chloride solutions are considered.  相似文献   

20.
For rechargeable metal–air batteries, which are a promising energy storage device for renewable and sustainable energy technologies, the development of cost-effective electrocatalysts with effective bifunctional activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been a challenging task. To realize highly effective ORR and OER electrocatalysts, we present a hybrid catalyst, Co3O4-infiltrated La0.5Sr0.5MnO3-δ (LSM@Co3O4), synthesized using an electrospray and infiltration technique. This study expands the scope of the infiltration technique by depositing ~18 nm nanoparticles on unprecedented ~70 nm nano-scaffolds. The hybrid LSM@Co3O4 catalyst exhibits high catalytic activities for both ORR and OER (~7 times, ~1.5 times, and ~1.6 times higher than LSM, Co3O4, and IrO2, respectively) in terms of onset potential and limiting current density. Moreover, with the LSM@Co3O4, the number of electrons transferred reaches four, indicating that the catalyst is effective in the reduction reaction of O2 via a direct four-electron pathway. The study demonstrates that hybrid catalysts are a promising approach for oxygen electrocatalysts for renewable and sustainable energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号