首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently presented electron spin resonance spectra of poly(acrylonitrile–butadiene–styrene) (ABS) doped with 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD) as spin probes. The spectra were measured in three types of ABS that differed in their butadiene contents and methods of preparation. Results for the ABS polymers were evaluated by comparison with similar studies on the homopolymers polybutadiene (PB) and polystyrene (PS) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Only one spectral component was detected for 10DND in PB, PS, SAN, and SB. In contrast, two spectral components differing in their dynamic properties were detected in the ABS samples and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The presence of two spectral components was taken as an indication of microphase separation. In this study, we present details on the dynamics and microphase separation by simulating spectra of 10DND in ABS, PB, PS, and SAN. The simulations are based on a dynamic model defined by the components of the rotational diffusion tensor and the diffusion tilt angle between the symmetry axis of the rotational diffusion tensor and the direction of the nitrogen 2pz atomic orbital. The jump diffusion model led to good agreement with experimental spectra. In this model, the spin probe has a fixed orientation for a given time and then jumps instantaneously to a new orientation. The temperature variation of the rotational correlation time in PB and PS consisted of two dynamic regimes, with different activation energies. The transition temperature at which the change in dynamics occurs (Ttr) is 380 K for PS and 205 K for PB, essentially the same as the corresponding glass‐transition temperatures measured by differential scanning calorimetry. We suggest that Ttr is a better indicator of the glass transition than the temperature at which the total spectral width is 50 G, especially for large probes. The simulation program allowed the determination of the relative intensities of the fast and slow spectral components as a function of temperature; this information was used to clarify the redistribution of the probe above the glass transition of the SAN‐rich component in ABS systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 424–433, 2002; DOI 10.1002/polb.10110  相似文献   

2.
Microphase separation in poly(acrylonitrile–butadiene–styrene) (ABS) was studied as a function of the butadiene content and method of preparation with electron spin resonance (ESR) spectra of nitroxide spin probes. Results for the ABS polymers were evaluated by comparison with similar studies of the homopolymers polybutadiene (PB), polystyrene (PS), and polyacrylonitrile (PAN) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Two spin probes were selected for this study: 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD). The probes varied in size and were selected because their hydrocarbon backbone made them compatible with the polymers studied. The ESR spectra were measured in the temperature range 120–420 K and were analyzed in terms of line shapes, line widths, and hyperfine splitting from the 14N nucleus; the appearance of more than one spectral component was taken as an indication of microphase separation. Only one spectral component was detected for 10DND in PB, PS, and PAN and in the copolymers SAN and SB. In contrast, two spectral components differing in their dynamic properties were detected for both probes in the three types of ABS samples studied and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The behavior of the fast component in ABS prepared by mass polymerization suggested that the low‐Tg (glass‐transition‐temperature) phase was almost pure PB. The corresponding phase in ABS prepared by emulsion grafting also contained styrene and acrylonitrile monomers. A redistribution of the spin probes on heating occurred with heating near the Tg of the SAN phase, suggesting that the ABS polymers as prepared were not in thermodynamic equilibrium. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 415–423, 2002; DOI 10.1002/polb.10109  相似文献   

3.
以四-(4-甲氧基-3-磺酸基苯)卟啉(T(4-Mop)PS4)为探针,通过T(4-Mop)PS4与牛血清白蛋白(BSA)的相互作用,建立了测定BSA的电化学分析方法。T(4-Mop)PS4的峰电流变化(ΔIp)与BSA在2.0×10-6~1.0×10-5mol.L-1范围内呈良好的线性关系,检出限为1.2×10-6mol.L-1;对5.0×10-6mol.L-1BSA平行测定8次,其相对标准偏差为2.0%,回收率为95%~104%。组氨酸、缬氨酸、苯丙氨酸、丝氨酸、异白氨酸、谷氨酰胺、苏氨酸等氨基酸对BSA的测定不产生干扰。采用紫外可见光度法、荧光光谱法和线性扫描伏安法(LSV)研究了T(4-Mop)PS4与BSA之间的相互作用,并测定了二者相互作用的结合常数和结合比。研究表明,T(4-Mop)PS4与BSA之间主要以疏水作用力结合,形成了1∶1的稳定复合物。  相似文献   

4.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

5.
《先进技术聚合物》2018,29(1):337-346
A biology‐inspired approach was utilized to functionalize hexagonal boron nitride (h‐BN), to enhance the interfacial interactions in acrylonitrile‐butadiene‐styrene copolymer/boron nitride (ABS/BN) composites. The poly (dopamine), poly (DOPA) layer, was formed on the surface of BN platelets via spontaneously oxidative self‐polymerization of DOPA in aqueous solution. The modified BN (named as mBN) coated with poly (DOPA) was mixed with ABS resin by melting. The strong interfacial interactions via π‐π stacking plus Van der Waals, both derived from by poly (DOPA), significantly promoted not only the homogeneous dispersion of h‐BN in the matrix, but also the effective interfacial stress transfer, leading to improve the impact strength of ABS/mBN even at slight mBN loadings. A high thermal conductivity of 0.501 W/(m·K) was obtained at 20 wt% mBN content, reaching 2.63 times of the value for pure ABS (0.176 W/(m·K)). Meanwhile, the ABS/mBN composites also exhibited an excellent electrical insulation property, which can be expected to be applied in the fields of thermal management and electrical enclosure.  相似文献   

6.

A functionalized compound, 4‐(2‐bromoisobutyryl)‐2,2,6,6‐tetra‐methylpiperidine‐1‐oxyl (Br‐TEMPO), was synthesized and used to synthesize block copolymers through tandem nitroxide‐mediated radical polymerization (NMRP) and atom transfer radical polymerization (ATRP). First, Br‐TEMPO was used to mediate the polymerization of styrene. The kinetics of polymerization proved a typical “living” nature of the reaction and the effectiveness in the mediation of polymerization of Br‐TEMPO. Then the PS‐Br macroinitiator was used to initiate atom transfer radical polymerization (ATRP). A series of acrylates were initiated by PS‐Br macroinitiators in typical ATRP processes at various conditions. The controlled polymerization of ATRP was also confirmed by molecular weight and kinetic analysis. Several cleavable block copolymers of PS‐b‐P(t‐BA), PS‐b‐P(n‐BA), and PS‐b‐PMA, with different molecular weights, were synthesized via this strategy. Relatively low polydispersities (<1.5) were observed and the molecular weights were in agreement with the theoretical ones. Hydrolysis of PS‐b‐P(t‐BA) was carried out, giving amphiphilic block copolymer PS‐b‐PAA without the cleavage of C‐ON bond or ester bond. All the block copolymers have two Tgs as demonstrated by DSC. A typical cleavable block copolymer of PS‐b‐PMA was cleaved by adding phenylhydrazine at 120°C to produce homopolymers in situ.  相似文献   

7.
Polystyrene/polydivinyl benzene (PS/PDVB) composite microspheres of narrow size distribution were prepared by a single-step swelling process of uniform PS microspheres with DVB and benzoyl peroxide, followed by polymerization of DVB within the microspheres. Dissolution of the PS template resulted in porous uniformly sized PDVB microspheres. New, solid, non-halogenated, fire-retardant composite microspheres of narrow size distribution were prepared by encapsulation of resorcinol bis (diphenyl phosphate) (RDP) within the pores of the PDVB microspheres. The encapsulation was performed by two different methods as follows: (1) vacuum and (2) heat/cool cycles. The loading capacity of the RDP into the PDVB particles was elucidated. PS/PDVB-RDP blends were prepared by mixing PS with the PDVB-RDP microspheres. Thermogravimetric analysis (TGA) illustrated that the thermal stability of the PS increases as the content (10–40 %) of the PDVB-RDP increased. Polycarbonate/poly(acrylonitrile-butadiene-styrene)/PDVB-RDP (PC/ABS/PDVB-RDP) blends were prepared by melting PC/ABS together with the PDVB-RDP microspheres at 250 °C and then pelleting it in an injection molding machine at 250 °C and 40 t. The improved thermal stability of the PC/ABS by blending it with PDVB-RDP was demonstrated by a vertical burn test on PC/ABS/PDVB-RDP bones.  相似文献   

8.
Heteroarm H‐shaped terpolymers (PS)(PtBA)–PEO–(PtBA)(PS) and (PS)(PtBA)–PPO–(PtBA)(PS) [where PS is polystyrene, PtBA is poly(tert‐butyl acrylate), PEO is poly(ethylene oxide), and PPO is poly(propylene oxide)], containing PEO or PPO as a backbone and PS and PtBA as side arms, were prepared via the combination of the Diels–Alder reaction and atom transfer radical and nitroxide‐mediated radical polymerization routes. Commercially available PEO or PPO containing bismaleimide end groups was reacted with a compound having an anthracene functionality, succinic acid anthracen‐9‐yl methyl ester 3‐(2‐bromo‐2‐methylpropionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxycarbonyl]propyl ester, with a Diels–Alder reaction strategy. The obtained macroinitiator with tertiary bromide and 2,2,6,6‐tetramethylpiperidin‐1‐oxy functional end groups was used subsequently in the atom transfer radical polymerization of tert‐butyl acrylate and in the nitroxide‐mediated free‐radical polymerization of styrene to produce heteroarm H‐shaped terpolymers with moderately low molecular weight distributions (<1.31). The polymers were characterized with 1H NMR, ultraviolet, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3947–3957, 2006  相似文献   

9.
二十碳五烯酸和二十二碳六烯酸是两种非常重要的ω-3多不饱和脂肪酸,广泛用于膳食补充剂和药品,同时它们的生理作用并不完全相同,因此分离制备它们的高纯度单体十分必要。首先以聚苯乙烯/二乙烯基苯(PS/DVB)聚合物为固定相,在液相色谱上分离二十碳五烯酸乙酯(EPA-EE)和二十二碳六烯酸乙酯(DHA-EE),考察了流动相、填料粒径、温度对分离的影响。然后采用粒径20 μ m、孔径10 nm的PS/DVB填料装填了8根150 mm×10 mm的半制备色谱柱,测定了半制备柱装填的均一性。最后尝试在模拟移动床(SMB)色谱上分离EPA-EE和DHA-EE的混合物,探究了Ⅱ区和Ⅲ区的流量、进料流量、进料浓度对分离的影响,结果表明SMB制备的EPA-EE和DHA-EE的相对纯度分别为91.6%和93.6%,回收率分别为97.0%和91.6%,固定相生产率为5.97 g/(L\5h),溶剂消耗为1.52 L/g。SMB制备EPA-EE和DHA-EE具有较大的应用潜力。  相似文献   

10.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

11.
A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.  相似文献   

12.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Clay was modified with an oligomeric surfactant containing styrene and lauryl acrylate units along with a small amount of vinylbenzyl chloride to permit the formation of an ammonium salt so that this can be attached to a clay. The oligomerically-modified clay contains 50% inorganic clay, and styrenic polymer nanocomposites, including those of polystyrene (PS), high-impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN) and acrylonitrile-butadiene-styrene (ABS), were prepared by melt blending. The morphologies of the nanocomposites were evaluated by X-ray diffraction and transmission electron microscopy. Mixed intercalated/delaminated nanocomposites were formed for SAN and ABS while largely immiscible nanocomposites were formed for PS and HIPS. The thermal stability and fire properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticization from the oligomeric surfactant was suppressed and the tensile strength and Young's modulus were improved, compared to similar oligomerically-modified clays with higher organic content.  相似文献   

14.
Messenger RNAs (mRNAs) with phosphorothioate modification (PS‐mRNA) to the phosphate site of A, G, C, and U with all 16 possible combinations were prepared, and the translation reaction was evaluated using an E. coli cell‐free translation system. Protein synthesis from PS‐mRNA increased in 12 of 15 patterns when compared with that of unmodified mRNA. The protein yield increased 22‐fold when the phosphorothioate modification at A/C sites was introduced into the region from the 5′‐end to the initiation codon. Single‐turnover analysis of PS‐mRNA translation showed that phosphorothioate modification increases the number of translating ribosomes, thus suggesting that the rate of translation initiation (rate of ribosome complex formation) is positively affected by the modification. The method provides a new strategy for improving translation by using non‐natural mRNA.  相似文献   

15.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

16.
The cure kinetics of epoxy based on the diglycidyl ether of bisphenol A (DGEBA) modified with different amounts of poly(acrylonitrile-butadiene-styrene) (ABS) and cured with 4,4′-diaminodiphenylsulfone (DDS) was investigated by employing differential scanning calorimetry (DSC). The curing reaction was followed by using an isothermal approach over the temperature range 150–180°C. The amount of ABS in the blends was 3.6, 6.9, 10 and 12.9 wt%. Blending of ABS in the epoxy monomer did not change the reaction mechanism of the epoxy network formation, but the reaction rate seems to be decreased with the addition of the thermoplastic. A phenomenological kinetic model was used for kinetic analysis. Activation energies and kinetic parameters were determined by fitting the kinetic model with experimental data. Diffusion control was incorporated to describe the cure in the latter stages, predicting the cure kinetics over the whole range of conversion. The reaction rates for the epoxy blends were found to be lower than that of the neat epoxy. The reaction rates decreased when the ABS contents was increased, due to the dilution effect caused by the ABS on the epoxy/amine reaction mixture.  相似文献   

17.
庞永艳 《高分子科学》2015,33(5):772-782
The mechanism of char formation effect of zinc acetylacetonate(Zn(acac)2) on acrylonitrile-butadiene-styrene copolymer(ABS) was studied. Thermal gravimetric analysis(TGA) was used to study the mass loss and char yield of ABS composites. In situ temperature-dependent Fourier transform infrared spectroscopy(FTIR) was used to characterize the chemical change during thermal decomposition. Roman spectroscopy and scanning electron microscopy(SEM) were applied to characterize the structure and morphology of the char after combustion. Results showed that the presence of Zn(acac)2 not only slowed down thermal decomposition of the ABS composites, but also increased the charred residue. A more compact and denser char layer with higher graphitization degree was formed for ABS composites with Zn(acac)2. To study the char formation mechanism of Zn(acac)2 on ABS, thermal decomposition was analyzed for the composites of Zn(acac)2 with PB, PS and SAN, respectively. Also, the chemical structure change was investigated for Zn(acac)2 during thermal decomposition. Based on these results, it was deduced that the increase of char yield of ABS composites was probably attributed to the interaction between the units of acrylonitrile in ABS and zinc acetate, produced during the thermal decomposition of Zn(acac)2. A proposed mechanism for crosslinking and the subsequent char formation was presented.  相似文献   

18.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen‐bond‐donating/‐accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen‐bond‐donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups.  相似文献   

20.
Due to the establishment of common thermoplastics such as polyethylene, polypropylene and polytetrafluoroethylene as substrates for modern electrets, research in this field has seen significant progress in recent decades. However, there still is a need for new substrate materials in order to boost modern-day electret applications. Important targets for a further development are electret substrates with a tailored balance between cost and performance especially at elevated temperatures. In this study, experimental results concerning the charge storage behaviour of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) films and its blends with polystyrene (PS) are presented. As demonstrated, the good electret performance of neat PPE can be further enhanced by the addition of suitable weight fractions of PS, a synergistic electret behaviour that is related to morphological blend parameters such as the packaging density and the presence of PS micro-heterogeneities in the PPE/PS matrix. Most importantly, the results highlighted in this study clearly demonstrate the potential of blending as a promising approach towards satisfying the demands of tomorrows’ electret applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号