首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has recently been proposed that disulfide/thiolate interconversion supported by transition‐metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the Mn+?disulfide/M(n+1)+?thiolate switch properties. Like its isostructural CoII‐based parent compound, CoII 2 SS (Angew. Chem. Int. Ed.­ 2014 , 53, 5318), the new dinuclear disulfide‐bridged MnII complex MnII 2 SS can undergo an MII?disulfide/MIII?thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of MIII to MII with the concomitant oxidation of the thiolates, requires the release of iodide. The MnII 2 SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear MnIII?thiolate complex MnIIII . The process is much slower (ca. 16 h) and much less efficient (ca. 30 % yield) with respect to the instantaneous and quantitative conversion of CoII 2 SS into CoIIII under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT‐calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, MII?disulfide/MIII?thiolate interconversion is reversible. However, when the iodide is removed with Ag+, the MII 2 SS complexes are regenerated, albeit much slower for Mn than for Co systems.  相似文献   

2.
Inhaltsübersicht. Fluortrirutile LiMIIMIIIF6 kristallisieren tetragonal in dor Raumgruppe P42/mnm mit Li in Position (2a) und MII und MIII statistisch vorteilt in (4e). An Einkristallen und durch Pulvermessungen wurde die Verteilung der Kationen untersucht, wozu die neu dargestellte Rhodiumverbindung LiZnRhF6 auf Grund des unterschiedlichen Streuvermögens der Kationen besonders geeignet war. Verbindungen LiCuMIIIF6 zeigen die einfache Rutilstruktur. Investigations of the Quaternary Fluorides LiMIIMIIIF6. On the Distribution of Cations in Fluorotrirutiles Abstract. Trirutiles LiMIIMIIIF6 crystallize tetragonally in the space group P42/mnm with Li in position (2a) und MII and MIII statistically distributed in (4e). By single-crystal X-Ray diffraction and by powder work cation ordering was examined for which the new compound LiZnRhF, was especially adapted. Compounds LiCuMIIIF6 are disordered rutile phases.  相似文献   

3.
Structural Studies with Usovites: Ba2CaMIIV2F14 (MIII = Mn, Fe), Ba2CaMnFe2F14 and Ba2CaCuM2IIIF14 (MIII = Mn, Fe, Ga). Single crystals of six compounds Ba2CaMIIM2IIIF14 were prepared to refine their usovite type structure (space group C2/c, Z = 4) using X‐ray diffractometer data. The cell parameters of the phases studied with MIIM2III= MnV2, FeV2, CuMn2, MnFe2, CuFe2 und CuGa2 are within the range 1374≤a/pm≤1384, 534≤b/pm≤542, 1474≤c/pm≤1510, 91, 3≤ß/°≤93, 2. The atoms Ca and MII are incompletely ordered on the 8‐ and 6‐coordinated positions, 4e and 4b, respectively. In the case of Ba2CaFeV2F14 and Ba2CaCuGa2F14 there is reciprocal substitution (x≈0, 1): (Ca1‐xMxII) (4e) and (M1‐xIICax) (4b). In the case of the other usovites Ca‐enriched phases Ba2Ca(M1‐yIICay)M2IIIF14 occured (up to y≈0, 35), exhibiting partial substitution at the octahedral position (4b) only, showing a corresponding increase in MII‐F distances. The distortion of [MIIF6] and [MIIIF6] octahedra within the structure is considerably enhanced on replacement by CuII and MnIII. The results of powder magnetic susceptibility measurements of Ba2CaMnV2F14 and Ba2CaFeV2F14 (TN≈7K) are reported.  相似文献   

4.
We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions MII3[(M′)III(CN)6]2·nH2O and MII2[FeII(CN)6nH2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, (M′)III=Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between −150 °C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3?m, F4?3m and Pm3?m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7×10−6 K−1 for Co3[Co(CN)6]2·12H2O. All of the MII3[CoIII(CN)6]2·nH2O compounds show negative thermal expansion behavior, which correlates with the Irving–Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the MII3[FeIII(CN)6]2·nH2O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the MII2[FeII(CN)6nH2O compounds show positive thermal expansion behavior.  相似文献   

5.
State of uranoarsenates MII(AsUO6)2·nH2O (MII = Mn, Co, Ni, Cu, Zn, Cd, Pb) in aqueous solutions in a wide range of acidity (pH 0?C14) was studied. Acid-base boundaries of existence of the compounds were estimated, products of conversion were identified, and solubility of MII(AsUO6)2·nH2O was determined. On the basis of the obtained data the solubility products and Gibbs functions of formation of uranoarsenates, and the solubility curves were calculated, phase diagrams of uranium(VI) and arsenic(V) in solutions and in equilibrium solid phases were constructed with the use of the equilibrium thermodynamics technique.  相似文献   

6.
Equilibrium geometries and force fields for the series of molecules (MeO)nSiMe4−n(I), (OH)nSiMe4−n(II), and (MeO)nSi(OH)4−n(III) with n = 1–4 are obtained at the DFT/B3LYP level of theory with 6-31G* and aug-cc-pVDZ basis sets in order to predict the structural parameters and vibrational spectra of these molecules, the larger part of which was not characterized experimentally. The performance of these theoretical methods was assessed on the existing spectral data for series I. The B3LYP/aug-cc-pVDZ method, firstly applied to this class of molecules, demonstrates a fair agreement with experimental vibrational frequencies even without empirical scaling. For molecules of series II and III vibrational spectra are predicted in order to supply spectral data for monitoring the sol–gel processes at the hydrolysis stage. The hyperconjugative strengthening of SiO bonds with the number of oxygen atoms coordinated to silicon leads to the growth of their frequencies, but the larger increase of νSiO (due to kinematic factors) occurs at the SiOMe/SiOH substitution. The predicted distinctive feature of series II and III is the appearance of bands with high IR intensity in the 1000–900 cm−1 spectral region that increase their frequencies with n. In series III it is accompanied with the steady increase of the νsSiO4 frequency in the 700–600 cm−1 range.  相似文献   

7.
Heterometallic compounds BaCr2(OH)(Ac)(Nta)2 · 4H2O (I) and [Fe(L)3][Cr2(OH)(Ac)(Nta)2] · nH2O (L is Bipy (II) and Phen (III); Bipy is, αα′-bipyridine, Phen is o,o′-phenanthroline, Ac is acetate ion, Nta is nitrilotriacetate ion; n = 8 (II) and 6.25 (III)) are synthesized. According to the X-ray diffraction data, compounds II and III have ionic structures built of the isolated complex cations [Fe(L)3]2+, binuclear complex anions [Cr2(OH)(Ac)(Nta)2]2−, and crystallization water molecules. The magnetic properties of compounds II and III in the interval from 2 to 300 K confirm assumptions on the diamagnetic character of [Fe(L)3]2+ and indicate the antiferromagnetic interaction between the chromium atoms in the dimeric fragment [Cr2(OH)(Ac)(Nta)2]2−.  相似文献   

8.
Three layered double hydroxides (LDH) [Mg1−xAlx(OH)2]x+(Am−)x/m]·nH2O and [MII 1−xMIII x (OH)2]x+(Am−)x/m]·nH2O (MII — Mg, Co, Ni; MIII — Al; A — CO3 2−) were successfully synthesized by the low supersaturation method. The as-synthesized LDH samples were thermally decomposed and the derived mixed metal oxides reformed back to layered structures in water and magnesium nitrate media at different temperatures. All synthesized samples were characterized by X-ray diffraction (XRD) analysis, thermogravimetric (TG) analysis, X-ray fluorescence (XRF) analysis and scanning electron microscopy (SEM). The results of XRD and XRF analyses showed that single-phase layered double hydroxides were formed during synthesis and reformation. It was demonstrated, that a partially substituted by cobalt and nickel LDH samples also show memory effect. The crystallite size of regenerated LDH depends on the regeneration media, temperature and chemical composition. The LDH samples after regeneration consist of large particles with sharp edges along with a large amount of smaller particles  相似文献   

9.
Disulfide/thiolate interconversion supported by transition‐metal ions is proposed to be implicated in fundamental biological processes, such as the transport of metal ions or the regulation of the production of reactive oxygen species. We report herein a mononuclear dithiolate CoIII complex, [CoIIILS(Cl)] ( 1 ; LS=sulfur containing ligand), that undergoes a clean, fast, quantitative and reversible CoII disulfide/CoIII thiolate interconversion mediated by a chloride anion. The removal of Cl? from the CoIII complex leads to the formation of a bis(μ‐thiolato) μ‐disulfido dicobalt(II) complex, [Co2II,IILSSL]2+ ( 2 2+). The structures of both complexes have been resolved by single‐crystal X‐ray diffraction; their magnetic, spectroscopic, and redox properties investigated together with DFT calculations. This system is a unique example of metal‐based switchable Mn2‐RSSR/2 M(n+1)‐SR (M=metal ion, n=oxidation state) system that does not contain copper, acts under aerobic conditions, and involves systems with different nuclearities.  相似文献   

10.
The first solvent‐free cationic complexes of the divalent rare‐earth metals, [{RO}REII]+[A]? (REII=YbII, 1 ; EuII, 2 ) and [{LO}REII]+[A]? ([A]?=[H2N{B(C6F5)3}2]?; REII=YbII, 3 ; EuII, 4 ), have been prepared by using highly chelating monoanionic aminoether‐fluoroalkoxide ({RO}?) and aminoether‐phenolate ({LO}?) ligands. Complexes 1 and 2 are structurally related to their alkaline‐earth analogues [{RO}AE]+[A]? (AE=Ca, 5 ; Sr, 6 ). Yet, the two families behave very differently during catalysis of the ring‐opening polymerization (ROP) of L ‐lactide (L ‐LA) and trimethylene carbonate (TMC) performed under immortal conditions with excess BnOH as an exogenous chain‐transfer agent. The ligand was found to strongly influence the behavior of the REII complexes during ROP catalysis. The fluoroalkoxide REII catalysts 1 and 2 are not oxidized under ROP conditions, and compare very favorably with their Ca and Sr congeners 5 and 6 in terms of activity (turnover frequency (TOF) in the range 200–400 molL‐LA (molEu h?1)) and control over the parameters during the immortal ROP of L ‐LA (Mn,theorMn,SEC, Mw/Mn<1.05). The EuII‐phenolate 4 provided one of the most effective ROP cationic systems known to date for L ‐LA polymerization, exhibiting high activity (TOF up to 1 880 molL‐LA?(molEu h)?1) and good control (Mw/Mn=1.05). By contrast, upon addition of L ‐LA the YbII‐phenolate 3 immediately oxidizes to inactive REIII species. Yet, the cyclic carbonate TMC was rapidly polymerized by combinations of 3 (or even 1 ) and BnOH, revealing excellent activities (TOF=5000–7000 molTMC?(molEu h)?1) and unusually high control (Mn,theorMn,SEC, Mw/Mn<1.09); under identical conditions, the calcium derivative 5 was entirely inert toward TMC. Based on experimental and kinetic data, a new ligand‐assisted activated monomer ROP mechanism is suggested, in which the so‐called ancillary ligand plays a crucial role in the catalytic cycle. A coherent reaction pathway computed by DFT, compatible with the experimental data, supports the proposed scenario.  相似文献   

11.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

12.
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+ species results in the formation of [CoII4-L)(OH2)]2+. Further reduction produces [CoI4-L)(OH2)]+, which undergoes a rate-limiting structural rearrangement to [CoI5-L)]+ before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII−H]2+ estimated from PR experiments, we found that while the protonation of [CoIII−H]2+ is unfavorable, [CoII−H]+ reacts with protons to produce H2. The catalytic activity for H2 evolution tracks the hydricity of the [CoII−H]+ intermediate.  相似文献   

13.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

14.
Systems of the type MIMIIIS2 (chalcopyrite)-CdS (wurtzite) where MI = Ag, Cu and MIII = Al, Ga, In were investigated to determine the regions of mutual solid solubility. It was found that the chalcopyrite structure could not tolerate extensive CdS substitution. When MIII was Al or Ga the solubility of MIMIIIS2 in CdS was also very limited. However, when MIII = In (rIn3+ ? rGa3+ > rAl3+), the solubility of MIInS2 in CdS was quite extensive (~50%). These results are consistent with a prior study on systems of the type MIMIIIS2ZnS which indicated that in sulfides, larger cations tend to result in the formation of new quaternary, wurtzite phases.  相似文献   

15.
Summary The reaction of aqueous solutions of 3d metal salts with bis(hydroxylammonium) bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate in a 12 mole ratio yielded complexes of the general formula [MnL2(NH3OH)2]·nH2O and [FeIIIL2(NH3OH)H2O]·H2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, and L=bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate dianion.The compounds were characterized by i.r. spectra and thermal analysis. For all complexes, an octahedral structure is proposed which is formed bytrans coordination of two bidentate (OO) ligands (L) and two NH3OH+ cations attrans positions, coordinated also through oxygen atoms; and similarlytrans positions for NH3OH+ and H2O in the case of the FeIII complex.  相似文献   

16.
The insertion of the single‐molecule magnet (SMM) [MnIII(salen)(H2O)]22+ (salen2?=N,N′‐ethylenebis‐(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)]2[MnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 1 ). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [MnIII(salen)(H2O)]2[ZnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 2 ) and [InIII(sal2‐trien)][MnIICrIII(ox)3] ? (H2O)0.25 ? (CH3OH)0.25 ? (CH3CN)0.25 ( 3 ), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of CrIII affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic MnIICrIII network is observed at Tc=5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3 . In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near‐reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.  相似文献   

17.
This paper reports a new partially oxidized triphylite‐type phosphate (lithium iron phosphate), which has been synthesized hydrothermally at 973 K and 0.1 GPa. The structure is similar to that of natural triphylite, LiFe(PO4), and is characterized by two chains of edge‐sharing octahedra parallel to the b axis. The weakly distorted M1 octahedra contain Li atoms, whereas the more strongly distorted M2 octahedra contain FeII and FeIII atoms. Refined site occupancies and bond‐valence analysis show the presence of FeIII and vacancies on the M2 site, mainly explained by the substitution mechanism 3 FeII = 2 FeIII + vacancies.  相似文献   

18.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

19.
The ligand H6ioan has been used to synthesize the three dinuclear complexes [(ioan)MnIITiIV], [(ioan)FeIITiIV], and [(ioan)FeIIITiIV]+. The face-sharing bridging mode of the three phenolates provides short M-TiIV distances of ≈3.0 Å. Mössbauer spectra of [(ioan)FeIIITiIV]+ show a magnetically split six-line spectrum at 3 K in zero magnetic field demonstrating a slow magnetic relaxation. Magnetic measurements provide a zero-field splitting of |D|=5 cm−1 in [(ioan)FeIITiIV]. EPR spectroscopy demonstrates sizable zero-field splittings of the S=5/2 spin systems of [(ioan)MnIITiIV] (D=0.246 cm−1) and [(ioan)FeIIITiIV]+ (D<−1 cm−1) that can be related to enforced covalency of the M-Oph bonds. [(ioan)FeIIITiIV]+ exhibits a reversible reduction at −0.26 V vs. Fc+/Fc demonstrating the facile accessibility of FeIII and FeII. In contrast to an irreversible oxidation in [(ioan)NiIITiIV] at 0.78 V vs. Fc+/Fc, the reversible oxidation at 0.25 V vs. Fc+/Fc in [(ioan)MnIITiIV] indicates even the access of MnIII. These results indicate that pentanuclear complexes [(ioan)FeM1M2M1Fe(ioan)]n+ are meaningful targets to access electron delocalization in mixed-valence systems over five ions due to the facile accessibility of both FeII and FeIII in the terminal positions. This study provides important local spin-Hamiltonian and Mössbauer parameters that will be essential for the understanding of the potentially complicated electronic structure in the anticipated pentanuclear complexes.  相似文献   

20.
CoII salts in the presence of HCO3/CO32− in aqueous solutions act as electrocatalysts for water oxidation. It comprises of several key steps: (i) A relatively small wave at Epa≈0.71 V (vs. Ag/AgCl) owing to the CoIII/II redox couple. (ii) A second wave is observed at Epa≈1.10 V with a considerably larger current. In which the CoIII undergoes oxidation to form a CoIV species. The large current is attributed to catalytic oxidation of HCO3/CO32− to HCO4. (iii) A process with very large currents at >1.2 V owing to the formation of CoV(CO3)3, which oxidizes both water and HCO3/CO32−. These processes depend on [CoII], [NaHCO3], and pH. Chronoamperometry at 1.3 V gives a green deposit. It acts as a heterogeneous catalyst for water oxidation. DFT calculations point out that Con(CO3)3n−6, n=4, 5 are attainable at potentials similar to those experimentally observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号