首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel tripodal colorimetric anion sensors based on hydrazone CHN NH groups have been synthesized and their recognition behavior with anionic guests has been studied. In DMSO solutions, sensors 1 and 2 show colorimetric responses for F, H2PO4 and AcO, while in DMSO/H2O (9:1, V/V) solutions, sensor 1 shows single selectivity for AcO. 1H NMR titration confirms that the tripodal sensors could bind anions through the collaboration of three hydrazone groups and anions residing in the central cavity of the sensors.  相似文献   

2.
刘阁  邵杰 《无机化学学报》2011,27(4):731-736
设计合成了一种基于4-甲基-1-羟基二苯甲酮对硝基苯腙的比色和比率荧光阴离子受体1。此类受体以羟基和腙单元为识别位点,以硝基苯基为信号报告基团。向受体1的DMSO溶液中加入AcO-、H2PO4-、F-后,溶液颜色由黄色变为紫红色,而加入所研究的其它阴离子则无变化,从而实现对AcO-、H2PO4-、F-这三种离子的裸眼识别。利用紫外-可见吸收光谱、荧光光谱考察了其与AcO-,H2PO4-,F-,Cl-,Br-,I-等阴离子的识别作用。1H NMR滴定为受体分子与阴离子之间氢键作用本质提供了有力证据。  相似文献   

3.
In this report, we have shown that the encapsulation of the terbium 2-methylimidazole-4,5-dicarboxylic acid complex into inorganic host tetraethoxysilance is considered to be an efficient way for the design of anion sensors. Strong green emission still can be observed when it disperses in pure water. It was found that the luminescence of hybrid material was selectively turned off rapidly (1 s) by hydrogen sulfate compared with the addition of different anions such as F, Cl, Br and I. Thin film was successfully prepared and also could be a promising tool for recognizing HSO4.  相似文献   

4.
Superionic solid electrolytes (SEs) are essential for bulk-type solid-state battery (SSB) applications. Multicomponent SEs are recently attracting attention for their favorable charge-transport properties, however a thorough understanding of how configurational entropy (ΔSconf) affects ionic conductivity is lacking. Here, we successfully synthesized a series of halogen-rich lithium argyrodites with the general formula Li5.5PS4.5ClxBr1.5-x (0≤x≤1.5). Using neutron powder diffraction and 31P magic-angle spinning nuclear magnetic resonance spectroscopy, the S2−/Cl/Br occupancy on the anion sublattice was quantitatively analyzed. We show that disorder positively affects Li-ion dynamics, leading to a room-temperature ionic conductivity of 22.7 mS cm−1 (9.6 mS cm−1 in cold-pressed state) for Li5.5PS4.5Cl0.8Br0.7Sconf=1.98R). To the best of our knowledge, this is the first experimental evidence that configurational entropy of the anion sublattice correlates with ion mobility. Our results indicate the possibility of improving ionic conductivity in ceramic ion conductors by tailoring the degree of compositional complexity. Moreover, the Li5.5PS4.5Cl0.8Br0.7 SE allowed for stable cycling of single-crystal LiNi0.9Co0.06Mn0.04O2 (s-NCM90) composite cathodes in SSB cells, emphasizing that dual-substituted lithium argyrodites hold great promise in enabling high-performance electrochemical energy storage.  相似文献   

5.
An electrochromic system showing ease of color tunability has been constructed using a triple-decker PtII complex [Pt33-pydt)2(bpy)3]2+ (H2pydt=2,6-pyridinedithiol, bpy=2,2′-bipyridine). The divalent complex undergoes electrochemically quasi-reversible two-electron transfer coupled with the coordination/dissociation of axial ligands, forming higher valent Pt(+2.67) species [Pt3X23-pydt)2(bpy)3]2+ (X=Cl, Br, and SCN). These higher valent species exhibit characteristic colors ranging from red to cyan depending on the counter anion X of the electrolyte. The triple-decker structure provides a novel multicolor electrochromic system with favorable stability and reversibility. Theoretical calculations indicate that the colors of the Pt(+2.67) species are tunable by the trans influence of the axial ligand X. This novel strategy of post-synthetic color-tuning using triplatinum systems should enable the facile preparation of colorful electrochromic devices without any complicated procedures, which may find application in flexible displays, optical devices, and sensors.  相似文献   

6.
The major findings in the growing field of aggregation induced emissive (AIE) active materials for the detection of environmental toxic pollutants have been summarized and discussed in this Review article. Owing to the underlying photophysical phenomenon, fluorescent AIE active molecules show more impact on sensing applications. The major focus in current research efforts is on the development of AIE active materials such as TPE based organic fluorescent molecules, metal organic framework, and polymers that can be employed for the detection of toxic pollutants such as CN, NO2, Hg2+, Cd2+, As3+, As5+, F, Pb2+, Sb3+ ions.  相似文献   

7.
Infrared vibrational spectroscopy was used to probe concentration-dependent ion pair dissociation of imidazolium-based ionic liquids with three different halide anions (I, Br, and Cl) in deuterated chloroform. Dissociation of the ion pairs at low concentrations of ionic liquids was found to be the easiest for ionic liquid with Cl anion, the most electronegative anion among the three investigated. This anomalous trend of ion pair dissociation was explained in terms of varying interaction strength between the solvent (CDCl3) and the anions investigated.  相似文献   

8.
A series of octanuclear iodine-bromine interhalides [InBr8−n]2− (n=0, 2, 3, 4) were prepared systematically in two steps. Firstly, addition of a dihalogen (Br2 or IBr) to the triaminocyclopropenium bromide salt [C3(NEt2)3]Br forms the corresponding trihalide salt with Br3 or IBr2 anions, respectively. Secondly, addition to Br3 of half an equivalent of Br2 gives the octabromine polyhalide [Br8]2−, whereas addition to IBr2 of half an equivalent of Br2, IBr or I2 gives the corresponding interhalides: [I2Br6]2−, [I3Br5]2−, and [I4Br4]2−, respectively. The four octahalides were characterized by X-ray crystallography, computational studies, Raman and Far-IR spectroscopies, as well as by TGA and melting point. All of the salts were found to be ionic liquids.  相似文献   

9.
Several new transition metal complexes derived from 4,5-dimethyl-3-carboxaldehyde phenyl- thiosemicarbazone, LH, have been synthesized. The complexes are of stoichiometry, [CoL2]X, X = Cl, Br, ClO4 or NO3, [MnL2] and [CuXnLm], X = Cl, Br, NCS or N3; n = 1 or 0; m = 1 or 2 and L = the anion of LH. All complexes have been characterized by elemental analysis, spectral (i.r., electronic, NMR, ESR) and magnetic measurements. The ligand acts as tridentate monobasic co-ordinated to the metal ion via azomethine, pyrazole (N2) nitrogen atoms and the thiolo-sulphur. The ligand field and ESR parameters are used to interpret the nature of bonding of LH with the metal ion, ground state and the ligand field strength of LH and the various co-ordinated simple ions. The coupling constants of various co-ordinated nuclei with copper (II) are estimated from ESR spectra of copper (II) complexes.  相似文献   

10.
The interaction of molecules, especially hydrocarbons, at the gas/ionic liquid (IL) surface plays a crucial role in supported IL catalysis. The dynamics of this process is investigated by measuring the trapping probabilities of n-butane, iso-butane and 1-butene on a set of frozen 1-alkyl-3-methylimidazolium-based ILs [CnC1Im]X, where n=4, 8 and X=Cl, Br, [PF6] and [Tf2N]. The decrease of the initial trapping probability with increasing surface temperature is used to determine the desorption energy of the hydrocarbons at the IL surfaces. It increases with increasing alkyl chain length n and decreasing anion size for the ILs studied. We attribute these effects to different degrees of alkyl chain surface enrichment, while interactions between the adsorbate and the anion do not play a significant role. The adsorption energy also depends on the adsorbing molecule: It decreases in the order n-butane>1-butene>iso-butane, which can be explained by different dispersion interactions.  相似文献   

11.
A series of organotin(IV) compounds R3Sn(A) where R = Me or Ph and A is a chromogenic nitrophenolate ligand were prepared and studied as possible colorimetric sensors for anions (F, Cl, Br, AcO, H2PO4). Equilibrium constants for a complete set of reactions between R3Sn(A) with A = 2‐amino‐4‐nitrophenolate (ANP) or 4‐nitrophenolate and anions (X) involving formation of complexes R3Sn(A)(X) and substitution products R3Sn(X) and R3Sn(X)2 were determined by UV‐vis and 1H NMR titrations in MeCN and DMSO. The binding selectivity was AcO > F > H2PO4 > Cl ≫ Br in both solvents and both for R = Me and Ph with higher affinity for R = Ph. Compounds with A = ANP were found to have the optimum properties as anion sensors allowing optical detection of F, AcO and H2PO4 anions in the 5–100 µM range by appearance of an intense absorption band of free ANP resulting from its substitution with the analyte. Selectivity and affinity of anion interactions with R3Sn(ANP) are similar to those for thiourea receptors, but the organotin receptor produces a much larger naked eye detected optical signal, operates equally well in nonpolar and polar solvents and tolerates the presence of up to 20% vol. of water in DMSO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A novel molecular switch, 7-(N,N-diethylamino)-2-oxo-2H-chromen-4-yl ferrocene carboxylate (FCC), was synthesized and fully characterized by 1H NMR, 13C NMR, and HRMS. Taking advantage of the properties of ferrocene as an electron donor active unit and the coumarin as a fluorescent unit, the dyad FCC shows a fast and reversible redox-switchable fluorescence emission. In sharp contrast to most photoluminescent chromophores, FCC has a unique enhanced emission through aggregation. The change of electrochemical signals (CV and DPV) indicated that the ferrocene (Fc) unit of FCC could form inclusion complex with Me-β-cyclodextrin (CD). This inclusion complex could further weaken the aggregation-induced emission (AIE) effect remarkably. This advance paves the way to introduce AIE property into molecular devices applications.  相似文献   

13.
We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F, Cl, Br, and I) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F<Cl<Br<I. Particularly, the Co-iBFBim-COF-I showed nearly 100 % CO2 selectivity at a low full-cell voltage of 2.3 V, and achieved a high CO2 partial current density of 52 mA cm−2 with a turnover frequency of 3018 h−1 at 2.4 V in the anion membrane electrode assembly, which is 3.57 times larger than that of neutral Co-BFBim-COF. This work provides new insight into the importance of free anions in the stabilization of intermediates and decreasing the local binding energy of H2O with active moiety to enhance CO2 reduction reaction.  相似文献   

14.
《Tetrahedron letters》2014,55(51):7094-7098
A new thiacalix[4]arene based fluorescent chemosensor thiacalix[4]arene-N-(quinolin-8-yl)acetamide (TCAN8QA) has been synthesized. TCAN8QA has been found to exhibit highly selective behavior for F ions among all other anions, that is, Cl, Br, I, PO4−3, OH, H2PO4, and CH3COO in the absorption spectra as well as in the emission spectra. Red shift and quenching in emission spectra constituting the signature for fluoride detection are due to photoinduced charge transfer (PCT) which can be attributed to deprotonation of acidic NH proton in the presence of fluoride ions.  相似文献   

15.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998  相似文献   

16.
As one of most problematic radionuclides, technetium-99, mainly in the form of anionic pertechnetate (TcO4), exhibits high environmental mobility, long half-life, and radioactive hazard. Due to low charge density and high hydrophobicity for this tetrahedral anion, it is extremely difficult to recognize it in water. Seeking efficient and selective recognition method for TcO4 is still a big challenge. Herein, a new water-stable cationic metal-organic framework (ZJU-X8) was reported, bearing tetraphenylethylene pyrimidine-based aggregation-induced emission (AIE) ligands and attainable silver sites for TcO4 detection. ZJU-X8 underwent an obvious spectroscopic change from brilliant blue to flavovirens and exhibited splendid selectivity towards TcO4. This uncommon fluorescent recognition mechanism was well elucidated by batch sorption experiments and DFT calculations. It was found that only TcO4 could enter into the body of ZJU-X8 through anion exchange whereas other competing anions were excluded outside. Subsequently, after interaction between TcO4 and silver ions, the electron polarizations from pyrimidine rings to Ag+ cations significantly lowered the energy level of the π* orbital and thus reduced the π–π* energy gap, resulting in a red-shift in the fluorescent spectra.  相似文献   

17.
New ONS hydrazone ligand, 2-[(2-aminochromon-3-yl)methylidene]-N-phenylhydrazinecarbothioamide, HL , was synthesized and reacted with different salts of Cu (II) ion (OAc, NO3, SO42− and Cl) in absence and presence of secondary ligands (L′); 8-hydroxyquinoline, 1,10-phenanthroline or SCN; to form binary and ternary Cu(II)-chelates. The ligand and its Cu(II)-complexes were fully characterized by analytical, spectral, thermal, conductivity and magnetic susceptibility measurements. The metal chelates showed octahedral, square planar and /or distorted tetraherdal arrangements. Coats–Redfern equations used to calculate the kinetic parameters of the thermal decomposition stages (Ea, A, ΔH, ΔS and ΔG). The compounds exhibit luminescence property; promising interesting potential applications as photoactive materials. Lippert–Mataga, Bakhshiev, Kawski–Chamma–Viallet and microscopic solvent polarity parameter and ETN correlation methods were applied on the solvatochromic shifts of emission spectra to evaluate the ground (μg) and excited (μe) states dipole moments. Excited state dipole moment is larger than the ground state which may be attributed to π-π* transition. The coordinating anions play an important role on the position and intensity of emission band. The ligand and its metal complexes showed antimicrobial activity towards Gram–positive bacteria, Gram–negative bacteria, yeast and fungus. The molecular structural parameters of HL and its Cu(II)- complexes have been calculated on the basis of DFT engaged in the Gaussian 09 program at the B3LYP/6-31G(d,p) level; the theoretical data are correlated with the experimental data.  相似文献   

18.
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F, Cl, Br, and I, with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl, Br, and I, are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2-containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.  相似文献   

19.
This paper overviews three living cationic polymerization systems (for styrene, p-methoxystyrene, and isobutyl vinyl ether) that are, in common, featured by: (i) specifically in nonpolar solvents, the use of the hydrogen halide/metal halide initiating systems (HX/MXn; X: I, Br, Cl; MXn: ZnX2, SnCl4), which generate a living growing carbocation stabilized by a nucleophilic counteranion (X…MXn); (ii) specifically in polar solvents, the use of externally added ammonium salts (nBu4N+Y; Y: I, Br, Cl), which permit the generation of living species from HX/MXn by providing nucleophilic halogen anions Y, either the same as or different from the halogen X in HX.  相似文献   

20.
Though massive efforts have been devoted to exploring Br-based batteries, the highly soluble Br2/Br3 species causing rigorous “shuttle effect”, leads to severe self-discharge and low Coulombic efficiency. Conventionally, quaternary ammonium salts such as methyl ethyl morpholinium bromide (MEMBr) and tetrapropylammonium bromide (TPABr) are used to fix Br2 and Br3, but they occupy the mass and volume of battery without capacity contribution. Here, we report an all-active solid interhalogen compound, IBr, as a cathode to address the above challenges, in which the oxidized Br0 is fixed by iodine (I), thoroughly eliminating cross-diffusing Br2/Br3 species during the whole charging and discharging process. The Zn||IBr battery delivers remarkably high energy density of 385.8 Wh kg−1, which is higher than those of I2, MEMBr3, and TPABr3 cathodes. Our work provides new approaches to achieve active solid interhalogen chemistry for high-energy electrochemical energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号