首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work describes a mild and efficient approach for the synthesis of aryl amides via catalytic aminocarbonylation of aryl halides with alicyclic amines using a Pd(Pt Bu3)2/NH4Cl catalyst system. Under mild reaction temperature of 60°C and balloon pressure of CO, 5 mol% Pd(Pt Bu3)2 with a cheap NH4Cl promoter is sufficient for high yields of aryl amides. The influence of reaction parameters such as reaction temperature, ligand type and promoter on catalytic activity was investigated. This work also discusses the catalytic intermediates in detail, and provides a plausible mechanism based on an acid chloride intermediate.  相似文献   

2.
Lithium hydride (LiH) has a strong effect on iron leading to an approximately 3 orders of magnitude increase in catalytic ammonia synthesis. The existence of lithium–iron ternary hydride species at the surface/interface of the catalyst were identified and characterized for the first time by gas-phase optical spectroscopy coupled with mass spectrometry and quantum chemical calculations. The ternary hydride species may serve as centers that readily activate and hydrogenate dinitrogen, forming Fe-(NH2)-Li and LiNH2 moieties—possibly through a redox reaction of dinitrogen and hydridic hydrogen (LiH) that is mediated by iron—showing distinct differences from ammonia formation mediated by conventional iron or ruthenium-based catalysts. Hydrogen-associated activation and conversion of dinitrogen are discussed.  相似文献   

3.
Lithium hydride (LiH) has a strong effect on iron leading to an approximately 3 orders of magnitude increase in catalytic ammonia synthesis. The existence of lithium–iron ternary hydride species at the surface/interface of the catalyst were identified and characterized for the first time by gas‐phase optical spectroscopy coupled with mass spectrometry and quantum chemical calculations. The ternary hydride species may serve as centers that readily activate and hydrogenate dinitrogen, forming Fe‐(NH2)‐Li and LiNH2 moieties—possibly through a redox reaction of dinitrogen and hydridic hydrogen (LiH) that is mediated by iron—showing distinct differences from ammonia formation mediated by conventional iron or ruthenium‐based catalysts. Hydrogen‐associated activation and conversion of dinitrogen are discussed.  相似文献   

4.
Substitution in Layers of Cations in Lithium Amide: Potassium Trilithium Amide, KLi3(NH2)4, and Potassium Heptalithium Amide, KLi7(NH2)8 Four ternary amides were characterized in the system KNH2/LiNH2 by x-ray techniques: K2Li(NH2)3 (dimorphous), KLi(NH2)2, KLi3(NH2)4, and KLi7(NH2)8. The compounds were prepared by the reaction of ammonia with the metals in high-pressure autoclaves. The atomic arrangements of the potassium-poor amides, KLi3(NH2)4, and KLi7(NH2)8 which have been investigated by x-ray single crystal analysis are discussed: Layers of edge sharing aniontetrahedra occupied to three quarters by lithium are the dominating structural feature. These layers ? [Li3(NH2)4?] — are primitively stacked in such a manner that potassium occupies quadratic prismatic sites. In KLi7(NH2)8 the layers are connected alternatively by lithium in tetrahedral sites and potassium in an eightfold coordination. The ordered distribution of the cations is controlled by the orientation of amide ions. KLi3(NH2)4 can structure-geometricly be considered as a further example of an “ordered defect structure” of the ThCr2Si2 type structure.  相似文献   

5.
A low‐temperature ammonia synthesis process is required for on‐site synthesis. Barium‐doped calcium amide (Ba‐Ca(NH2)2) enhances the efficacy of ammonia synthesis mediated by Ru and Co by 2 orders of magnitude more than that of a conventional Ru catalyst at temperatures below 300 °C. Furthermore, the presented catalysts are superior to the wüstite‐based Fe catalyst, which is known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru–Ba core–shell structures are self‐organized on the Ba‐Ca(NH2)2 support during H2 pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m2 g−1). These self‐organized nanostructures account for the high catalytic performance in low‐temperature ammonia synthesis.  相似文献   

6.
The dehydrogenation/hydrogenation processes of the LiNH2/MgH2 (1:1) system were systematically investigated with respect to balller milling and the subsequent heating process. The reaction pathways for hydrogen desorption/absorption of the LiNH2/MgH2 (1:1) system were found to depend strongly on the milling duration due to the presence of two competing reactions in different stages (i.e., the reaction between Mg(NH2)2 and MgH2 and that between Mg(NH2)2 and LiH), caused by a metathesis reaction between LiNH2 and MgH2, which exhibits more the nature of solid–solid reactions. The study provides us with a new approach for the design of novel hydrogen storage systems and the improvement of hydrogen‐storage performance of the amide/hydride systems.  相似文献   

7.
Hydrogen Bonds in the Monoammoniates of Potassium and Cesium Amide X‐ray structure determination was carried out on the monoammoniates of potassium and cesium amide. Crystals of KNH2 · NH3 were grown from liquid NH3 at 50 °C > T > 20 °C. They crystallize in the cold part of a pressure resistant glass apparatus. Single crystals of CsNH2 · NH3 were obtained by zone‐melting at —30 °C in x‐ray capillaries. The following data characterize the crystal chemistry of the compounds: KNH2 · NH3 Cmc21, Z = 4 21 °C a = 3, 938(1) Å, b = 10, 983(3) Å, c = 5, 847(1) Å CsNH2 · NH3 Pnma, Z = 4 30 °C a = 7, 103(1) Å, b = 5, 390(1) Å, c = 10, 106(2) Å For CsNH2 · NH3 all hydrogen atom positions were successfully refined. The structure of both ammoniates may be described by a distorted hexagonal close packed arrangement of cations with the NH3 molecules in the octahedral and the NH2 anions in the trigonal bipyramidal interstices. The three H atoms of the NH3 molecules are involved in hydrogen bridge bonds to two amide ions with d(N(NH3)···N(NH2)) = 2.60Å for the K and 3.19Å for the Cs compound and to a further NH3 molecule with d(N(NH3)···N(NH3)) = 2.98Å for the K and 3.56Å for the Cs compound. Structural relationship of the ammoniates to the monohydrates of KOH and RbOH is discussed.  相似文献   

8.
The monoammoniate of lithium amidoborane, Li(NH3)NH2BH3, was synthesized by treatment of LiNH2BH3 with ammonia at room temperature. This compound exists in the amorphous state at room temperature, but at ?20 °C crystallizes in the orthorhombic space group Pbca with lattice parameters of a=9.711(4), b=8.7027(5), c=7.1999(1) Å, and V=608.51 Å3. The thermal decomposition behavior of this compound under argon and under ammonia was investigated. Through a series of experiments we have demonstrated that Li(NH3)NH2BH3 is able to absorb/desorb ammonia reversibly at room temperature. In the temperature range of 40–70 °C, this compound showed favorable dehydrogenation characteristics. Specifically, under ammonia this material was able to release 3.0 equiv hydrogen (11.18 wt %) rapidly at 60 °C, which represents a significant advantage over LiNH2BH3. It has been found that the formation of the coordination bond between ammonia and Li+ in LiNH2BH3 plays a crucial role in promoting the combination of hydridic B? H bonds and protic N? H bonds, leading to dehydrogenation at low temperature.  相似文献   

9.
Formation of alkaline‐earth metal amidoboranes M(NH2BH3)2 (M = Be, Mg, Ca, Sr, Ba) and unimolecular dehydrogenation reactions were computationally studied at the B3LYP/def2‐TZVPPD level of theory. Formation of M(NH2BH3)2 from ammonia borane and MH2 is exergonic, but subsequent unimolecular dehydrogenation reactions are endergonic at room temperature. In contrast to alkali metal amidoboranes, for M(NH2BH3)2 the nature of M significantly affects their reactivity. Activation energies for the dehydrogenation of first and second hydrogen molecules decrease from Be to Ba. In case of Be compounds, intramolecular M ··· H–B contacts play an important role, whereas for heavier analogs such contacts are much less pronounced.  相似文献   

10.
Ammonia is feeding nearly half the world population and also holds the promise as a carbon‐free energy carrier. The development of ammonia synthesis and decomposition processes under milder conditions is a grand challenge for more than a century. Increasing effort is devoted to this area in recent years and encouraging progress has been achieved. In this paper, we summarize our recent research using alkali or alkaline earth metal amides, imides and hydrides for ammonia synthesis and decomposition. These materials could serve as either indispensible component of active center in thermal catalytic process or nitrogen carrier for chemical looping ammonia synthesis. The synergy of amide, imide, or hydride with transition metals enables ammonia synthesis or decomposition with unprecedented high efficiency under milder reaction conditions, and thus opens an avenue to advance the chemistry or catalysis of N2 fixation reaction. The compositional and structural diversity of the amide, imide and hydride materials provides plenty of opportunity and potential for further exploration and optimization.  相似文献   

11.
The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively.  相似文献   

12.
Investigation of the System Potassium/Europium/Ammonia The reaction of the metals K and Eu in the molar ratios from K:Eu = 12:1 yo 1:40 with NH3 as solvent and reactant at temperature from 300 to 500°C and pressure of 5000 bar led to the following compounds: EuN, Eu(NH2)2, KEu(NH2)3 and K3Eu(NH2)6. Their conditions of preparation are explained. The thermal degradation of Eu(NH2)2 gives directly EuN; the ternary amides give EuN and undecomposed KNH2. The x-ray investigation of single crystals gave the structures: For the crystal data see “Inhaltsübersicht”. The crystal chemistry of the compounds is discussed.  相似文献   

13.
A catalytic asymmetric hydroxylation of N-nonsubstituted α-alkoxycarbonyl amides is described. A new effective catalyst comprising Pr(OiPr)3 and a fluoro-substituted amide-based ligand was identified using oxaziridine as the oxidizing reagent. The catalyst components were in dynamic equilibrium in the reaction mixture, which assembled to form the associated transition state through metal coordination and hydrogen bonding.  相似文献   

14.
Cs2Ba(O3)4 · 2 NH3, the First Ionic Alkaline Earth Metal Ozonide Cs2Ba(O3)4 · 2 NH3 is the first ionic ozonide containing an alkaline earth metal cation. Its synthesis has been achieved via partial cation exchange of CsO3 dissolved in liquid ammonia. According to a single crystal X‐ray structure determination (Pnnm; a = 6.312(2) Å, b = 12.975(3) Å, c = 8.045(2) Å; Z = 2; R1 = 4.6%; 848 independent reflections) ozonide anions, cesium cations and ammonia molecules form a CsCl‐type arrangement, where Cs+ and NH3 occupy one half of the cation sites, each. Ba2+ is coordinated by four ozonide groups and two ammonia molecules. Because of a short hydrogen bond to one of the terminal oxygen atoms, the respective O–O‐distance in the ozonide ion is longer than the other. The shortest intermolecular O–O‐distance ever observed in ionic ozonides has been found in this compound, which can be taken as a first clue for the radical ozonide anion to dimerize like the isoelectronic SO2 does.  相似文献   

15.
Beside several other applications, metal azides can be used for the synthesis of nitridophosphates and binary nitrides. Herein we present a novel synthetic access to azides: Several metals, such as main‐group, transition metals, and rare‐earth metals, react with silver azide in liquid ammonia as a solvent giving the corresponding metal azides. In this work Mn(N3)2, Sn(N3)2, and Eu(N3)2, as well as their ammonia complexes were synthesized for the first time through low‐temperature methods. Also a simpler access to Zn(N3)2 was possible. At room temperature and the respective vapor pressure of NH3, it became possible to grow single crystals of the dinuclear holmium azide [Ho2(μ‐NH2)3(NH3)10](N3)3?1.25 NH3. We are confident that this new route could lead to novel metal azides as well as nitrides of the main‐group, the transition, and the rare‐earth metals upon careful decomposition.  相似文献   

16.
Metalation of diethylphosphono-acetone (DÄPA) with potassium or lithium in benzene and with KNH2, LiNH2, or calcium in liquid ammonia afforded the metal derivatives ofDEPA, which were isolated in a pure state. Their structure has been investigated by i.r.- and1H n.m.r.-spectroscopy. In solution metallotropic conversion of thecis-enolate chelates intotrans-enolates and C-forms occurs. The reactivity of these metal derivatives towards some alkylating and acylating reagents as well towards carbonyl compounds has been investigated.

Mit 1 Abbildung

Diese Mitteilung ist z. T. Inhalt der Diplomarbeit vonI. Velinov, Univ. Sofia (1968).  相似文献   

17.
Lithium Aluminium Amide, LiAl(NH2)4-Preparation, X-Ray Investigation, I.R.Spectrum, and Thermal Decomposition The reaction of lithium and aluminium with liquid ammonia gives LiAl(NH2)4 within some days at temperatures from 80–100°C. Crystals for an X-ray structure determination must be grown very slowly from liquid NH3 starting with thoroughly pulverized amide. The structure analysis was successful including the determination of the positions of the hydrogen atoms of the amide ions. Space group: P21/n; lattice constants: a = 9.478(1) Å, b = 7.351(1) Å, c = 7.398(1) Å, β = 90.26(1)°; Z = 4, R-values (unweighted, weighted with w = 1): 0.042/0.046. The atomic arrangement of LiAl(NH2)4 can formally be described as a new variant of the GaPS4-type structure. The compound is characterized too by its i.r. spectrum. The thermal degradation of LiAl(NH2)4 gives at 180°C amorphous Al2(NH)3 and crystalline LiNH2; at 220°C results already very fine AlN. Above 400°C this AlN reacts with LiNH2 or Li2NH forming Li3AlN2.  相似文献   

18.
Potassium Triamidostannate(II), K[Sn(NH2)3] – Synthesis and Crystal Structure Rusty‐red crystals of K[Sn(NH2)3] were obtained by the reaction of SnBr2 and KNH2 in a 1 : 3 molar ratio in liquid ammonia at 233 K in the form of platelets. The structure was determined from single crystal X‐ray diffractometer data: Space group P3; Z = 2; a = 6.560(1) Å, c = 7.413(2) Å. The structure contains trigonal pyramidal complex anions [Sn(NH2)3] and potassium cations. These ions are arranged to one another following the motif of a strongly distorted hexagonal close packing of sequence A(Sn) B(Sn) A′(K) B′(K) …  相似文献   

19.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

20.
The dehydration of primary amides to their corresponding nitriles using four [PSiP]-pincer hydrido iron complexes 1–4 [(2-Ph2PC6H4)2MeSiFe(H)(PMe3)2 ( 1 ), (2-Ph2PC6H4)2HSiFe(H)(PMe3)2 ( 2 ), (2-(iPr)2PC6H4)2HSiFe(H)(PMe3)2 ( 3 ) and (2-(iPr)2PC6H4)2MeSiFe(H)(PMe3)2 ( 4 )] as catalysts in the presence of (EtO)3SiH as dehydrating reagent was explored in the good to excellent yields. It was proved for the first time that Lewis acid could significantly promote this catalytic system under milder reaction conditions than other Lewis acid-promoted system, such as shorter reaction time or lower reaction temperature. This is also the first example that dehydration of primary amides to nitriles was catalyzed by silyl hydrido iron complexes bearing [PSiP]-pincer ligands with Lewis acid as additive. This catalytic system has good tolerance for many substituents. Among the four iron hydrides 1 is the best catalyst. The effects of substituents of the [PSiP]-pincer ligands on the catalytic activity of the iron hydrides were discussed. A catalytic reaction mechanism was proposed. Complex 4 is a new iron complex and was fully characterized. The molecular structure of 4 was determined by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号