首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium‐doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well‐detected Na+?AcA(H2O)n and Na+?AcA2(H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na+?AcAm(H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water–acid clusters. Theoretical calculations show that small acid–water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre‐nucleation embryo in the formation of aerosols in wet environments.  相似文献   

2.
Oxalyl diisothiocyanate, ((CO)NCS)2, has been studied in solid argon matrices at 4.2 K with the aid of infrared (IR) spectroscopy. The spectra show mainly signals attributed to the most stable anti-anti conformer, which is corroborated by comparison to computed anharmonic fundamental IR transitions. Upon irradiation with 254 nm UV light, oxalyl diisothiocyanate eliminates carbon monoxide under formation of carbonyl diisothiocyanate, CO(NCS)2. This reaction is only slightly exothermic by 0.4 kcal mol−1 at the DLPNO-CCSD(T)/def2-QZVPP//B3LYP-D3/def2-TZVPP level of theory. Remarkably, photolysis produces mostly the less stable syn-anti conformer of carbonyl diisothiocyanate. Subsequent annealing at 30 K for two minutes results in a structural relaxation to the 0.7 kcal mol−1 more stable syn-syn conformer confirming a low torsional barrier height between the isomers.  相似文献   

3.
Sulfamic acid has wide application in industry and has been suggested to act as an effective nucleation agent for the formation of aerosols and cloud particles. From the point of view of the role that sulfamic acid may play in aerosol formation, the study of its homoaggregation is important. Gas phase clustering study was performed for sulfamic acid H3N·SO3, (ASA), from water and methanol–water solutions, by help of a TOF‐Q spectrometer equipped with electrospray ionization source, in the negative‐ion mode. The structure and stability of the (H3N·SO3)n and [(H3N·SO3)n‐H]? (n = 1–6) were studied using DFT/B3LYP/aug‐cc‐pVDZ method. The ESI MS study evidenced that both singly and doubly charged clusters are formed when the acids are electrosprayed from water solutions; they may be described as [(H3N·SO3)n‐zH]z? where z = 1 or 2. The largest identified clusters are built of 20 monomers. The theoretical studies showed that formation of higher order (ASA)n aggregates in the gas phase is energetically profitable. In contrast with the gas phase, aqueous solution does not favor the formation of (ASA)n aggregates. The study led to the conclusion that the ASA clusters are formed in the gas phase under the experimental conditions of the mass spectrometer. A hypothetical mechanism concerning the formation of the doubly negatively charged anionic aggregates is discussed. The obtained data suggest that small (NH3·SO3)n aggregates may also contribute to formation of aerosols in heavily polluted atmospheres with relatively large NH3 concentration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The dimerization of glycine is the simplest oligomerization of amino acids and plays an important role in biology. Although this reaction is thermodynamically unfavorable in the aqueous phase, it has been shown to be spontaneous in the gas phase and proceeds via two different concerted reaction mechanisms known as cis and trans. This may have profound implications in prebiotic chemistry as common atmospheric prenucleation clusters are thought to have participated in gas-phase reactions in the early Earth's atmosphere. We hypothesize that particular arrangements of water molecules in these clusters could lead to lowering of the reaction barrier of amino acid dimerization and could lead to abiotic catalysis toward polypeptides. We test our hypothesis on a system of the cis transition state of glycine dimerization solvated by one to five water molecules using a combination of a genetic algorithm-based configurational sampling, density functional theory geometries, and domain-based local pair natural orbital coupled-cluster electronic structure. First, we discuss the validity of the model chemistries used to obtain our results. Then, we show that the Gibbs free energy barrier for the concerted cis mechanism can indeed be lowered by the addition of up to five water molecules, depending on the temperature.  相似文献   

5.
A novel squaraine dye(SQ) modified by ferrocene has been synthesized through(E)-dodecyl-2-ferrocenyl vinyl-1H-pyrrole and squaric acid.The molecular structure of SQ was characterized by 1H NMR,13C NMR,MS and elemental analysis.SQ is high soluble in common solvents.The maximum absorptions of SQ in different solvents are in the range of 708-734 nm,exhibiting positive solvatochromism with increasing solvent polarity.The optical and electrical properties of SQ indicate that it is a promising electron donor material for bulk-heterojunction organic solar cell.  相似文献   

6.
手性方酰化哒嗪衍生物的合成及荧光特性研究   总被引:1,自引:0,他引:1  
以3,6-二甲酰基哒嗪和丙氨酸、α-氨基苯酚、方酸为原料合成了一种新的手性方酰化哒嗪胺衍生物, 利用IR, 1H NMR及元素分析对其结构进行了表征, 并研究了金属离子对化合物的荧光性的影响. 结果表明, Cu2+, Ni2+等金属离子对化合物产生明显的荧光猝灭作用.  相似文献   

7.
Two novel fluorene-based copolymers (PFSD and PFMD) containing squaric acid or maleimide unit in the main chain were synthesized in good yields by Suzuki coupling reaction. The resulting polymers possess excellent thermal stability, high electron affinity and high photolurninescence (PL) quantum yields. They can fluoresce in yellow-light range due to either the charge transfer between a fluorene segment and an electron-deficient containing squaric acid/maleimide segment of the polymers or the Forrster energy transfer between different polymer chains.The results from PL measurements of the isothermally heated polymer thin films show that the commonly observed aggregate excimer formation in polyfluorenes is very effectively suppressed in these two polymers due to the nonlinear structures of maleimide and squaric acid moieties. Double-layer polymer light-emitting diodes (PLED) were fabricated using the resulting polymers as the emitting layers and Ba or Mg:Ag(V:V=10:1) as cathodes.All the devices show bright yellow emission (562-579nm) with different maximum external quantum efficiencies (0.006%-1.13%). Compared with the other devices, indium-tin oxide (ITO)/polyethylenedioxythiophene (PEDOT):polystyrene sulfonic acid (PSS)/PFMD/Mg:Ag has the higher maximum external quantum efficiency of 1.13% at 564cd/m^2 with a bias of 8.4V.  相似文献   

8.
Large‐scale on‐the‐fly Born–Oppenheimer molecular dynamics simulations using recent advances in linear scaling electronic structure theory and trajectory integration techniques have been performed for protonated water clusters around the magic number (H2O)nH+, for n = 20 and 21. Besides demonstrating the feasibility and efficiency of the computational approach, the calculations reveal interesting dynamical details. Elimination of water molecules is found to be fast for both cluster sizes but rather insensitive to the initial geometry. The water molecules released acquire velocities compatible with thermal energies. The proton solvation shell changes between the well‐known Eigen and Zundel motifs and is characterized by specific low‐frequency vibrational modes, which have been quantified. The proton transfer mechanism largely resembles that of bulk water but one interesting variation was observed. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

10.
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic-resistant superbugs. Enzymes of the branched-chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti-microbial drug development. Dihydroxy-acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell-free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000-fold increase with kcat as high as ∼6.7 s−1). Inductively-coupled plasma-optical emission spectroscopy (ICP-OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N-isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti-microbial chemotherapeutics.  相似文献   

11.
The structure, bonding, and stability of clusters with the empirical formula CE5? (E=Al–Tl) have been analyzed by means of high‐level computations. The results indicate that, whereas aluminum and gallium clusters have C2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three‐dimensional C4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE4?, with 17‐valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating.  相似文献   

12.
The stability constants of UO 2 2+ -squarate complexes are measured at ionic strengths of 0.05M, 0.06M, 0.075M, 0.09M, 0.1M (squaric acid-perchloric acid) using a solvent extraction method at a pH of 1.1 and a temperature of 25 °C. The extractant used is dinonylnaphthalenesulfonic acid in n-heptane. The aqueous phase was made of a mixture of squaric and perchloric acid and233U radio tracer. The stability constants of squarate complexes of UO 2 2+ is seen to decrease linearly with the square root of the ionic strength.  相似文献   

13.
It has been shown by electrospray ionization–ion‐trap mass spectrometry that B12I122? converts to an intact B12 cluster as a result of successive stripping of single iodine radicals or ions. Herein, the structure and stability of all intermediate B12In? species (n=11 to 1) determined by means of first‐principles calculations are reported. The initial predominant loss of an iodine radical occurs most probably via the triplet state of B12I122?, and the reaction path for loss of an iodide ion from the singlet state crosses that from the triplet state. Experimentally, the boron clusters resulting from B12I122? through loss of either iodide or iodine occur at the same excitation energy in the ion trap. It is shown that the icosahedral B12 unit commonly observed in dodecaborate compounds is destabilized while losing iodine. The boron framework opens to nonicosahedral structures with five to seven iodine atoms left. The temperature of the ions has a considerable influence on the relative stability near the opening of the clusters. The most stable structures with five to seven iodine atoms are neither planar nor icosahedral.  相似文献   

14.
The crystal structure determinations of picolinamidium squarate, C6H7N2O+·C4O4, (I), and di‐p‐toluidinium squarate dihydrate, 2C7H10N+·C4O42−·2H2O, (II), are reported. While salt formation occurs by donation of one H atom from squaric acid to the picolin­amide mol­ecule in (I), in compound (II), each squaric acid mol­ecule donates one H atom to the p‐toluidine N atom of two trans p‐toluidine molecules. In (I), the pyridine ring is coplanar with the squarate monoanion through imposed crystallographic mirror symmetry; in (II), the dihedral angle between the p‐toluidine moiety and the squarate dianion is 70.71 (1)°. In (I), a three‐dimensional structure is formed via van der Waals interactions between parallel planes of mol­ecules, with hydrogen‐bond interactions (N—H⋯O and O—H⋯O) acting within the planes; hydrogen bonds form a three‐dimensional network in (II).  相似文献   

15.
Electronic and vibrational gas phase spectra of 1‐methylthymine (1MT) and 1‐methyluracil (1MU) and their clusters with water are presented. Mass selective IR/UV double resonance spectra confirm the formation of pyrimidine‐water clusters and are compared to calculated vibrational spectra obtained from ab initio calculations. In contrast to Y. He, C. Wu, W. Kong; J. Phys. Chem. A, 2004 , 108, 94 we are able to detect 1MT/1MU and their water clusters via resonant two‐photon delayed ionization under careful control of the applied water‐vapor pressure. The long‐living dark electronic state of 1MT and 1MU detected by delayed ionization, survives hydration and the photostability of 1MT/1MU cannot be attributed solely to hydration. Oxygen coexpansions and crossed‐beam experiments indicate that the triplet state population is probably small compared to the 1nπ* and/or hot electronic ground state population. Ab initio theory shows that solvation of 1MT by water does not lead to a substantial modification of the electronic relaxation and quenching of the 1nπ* state. Relaxation pathways via 1ππ*1nπ*1 and 1ππ *–S0 conical intersections and barriers have been identified, but are not significantly altered by hydration.  相似文献   

16.
Large, non‐symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square–planar coordination of tetravalent PdII, yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L 6 containing 60 well‐defined chiral centers in its flower‐like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L 3Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2′ , and dimer, 3 and 3′ , can be obtained directly from L by its coordination to trans‐ or cis‐N‐pyridyl‐coordinating PdII. These intriguing, water‐resistant, stable supramolecular assemblies have been thoroughly described by 1H DOSY NMR, mass spectrometry, circular dichroism, molecular modelling, and drift tube ion‐mobility mass spectrometry.  相似文献   

17.
A facile route to PtII complexes doubly functionalized with bioactive molecules through a bipyridine-type ligand is described. Initially, ligands L EE (containing two ethacrynic acid units), L EF (ethacrynic acid+flurbiprofen) and L EB (ethacrynic acid+biotin) were obtained in moderate to good yields from 2,2′-bipyridine-4,4′-dicarboxylic acid. Subsequent reaction of the ligands with [PtCl2(DMSO)2] afforded complexes [PtCl2( L EE )] ( 2 ), [PtCl2( L EF )] ( 3 ) and [PtCl2( L EB )] ( 4 ) in high yields. All compounds were fully characterized by analytical and spectroscopic methods. Complexes 2 – 4 are highly stable in water/DMSO solution at 37 °C after 72 h, whereas progressive release of the bioactive fragments was detected in a cell culture medium. The compounds were assessed for their in vitro antiproliferative activity towards tumorigenic A2780, A2780cisR and Y79 cells and non-tumourigenic HEK293 cells. In particular, the combination of ethacrynic acid and flurbiprofen in 3 overcomes cisplatin-based resistance and provides strong cancer cell selectivity. Enzyme inhibition assays on human GST P1 and human COX-2 and cross-experiments with complex 1 , analogous to 2 – 4 but lacking bio-groups, revealed a clear synergy between the PtII frame and the bioactive organic components.  相似文献   

18.
In recent years, natural deep eutectic solvents have been favored greatly due to their environment friendly, mild biological toxicity and simple biodegradability. Natural deep eutectic solvents gradually applied for the extracting bioactive compounds from natural products efficiently. In this study, 20 natural deep eutectic solvents were prepared and their physical and chemical properties were tested. The ultrasonic-assisted extraction method was used to extract flavonoids from Trollius ledebouri and high-performance liquid chromatography-ultraviolet was applied to examine two main bioactive flavonoids (orientin and vitexin). Compared with traditional solvents (water and 60% ethanol solution), natural deep eutectic solvents composed of L(-)-proline and levulinic acid (molar ratio 1:2) show a super extraction efficiency. On this basis, the response surface method was used to optimize the extraction temperature, extraction time, water contents, and solid–liquid ratio. As a consequence, the extraction temperature 60℃, extraction time 18 min, water content 14% (v/v), and the solid–liquid ratio 48 mL·g−1 were chosen as the best extraction process. This study shows that natural deep eutectic solvents can effectively extract flavonoids from T. ledebouri, laying a foundation for the further application of natural deep eutectic solvents to extract bioactive compounds from natural products.  相似文献   

19.
Polynuclear Cu(II)-squarate complex with 2-hydroxyethylpyridine, {[Cu(μ-sq)(etpy)2] · H2O} n has been prepared and characterized by elemental analysis, magnetic susceptibility, thermal analysis, IR, and UV-Vis spectroscopic studies (H2sq = squaric acid and etpy = 2-hydroxyethylpyridine). The structure of the complex was determined by single crystal X-ray diffraction. Density functional theory (DFT) and Hartree–Fock (HF) calculations were performed using the GAUSSIAN 03 program. The complex crystallizes in the monoclinic system, space group P21/c. The structure contains chains of squarato-O 1,O 3-bridged polynuclear copper(II) units held together by intermolecular hydrogen bonds, weak π–π and van der Waals interactions. The distorted octahedral geometry of Cu(II) is completed by two neutral bidentate etpy ligands through the nitrogen of pyridine and hydroxyl O atom. Thermal decomposition of the complex is studied from 30 to 500°C in a static air atmosphere.  相似文献   

20.
Superhalogens, owing to their large electron affinity (EA, exceeding those of any halogen atom), play an essential role in physical chemistry as well as new material design. They have applications in hydrogen storage and lithium-ion batteries. Owing to the unique geometries and electronic features of magnesium-based clusters, their potential to form a new class of lithium salts has been investigated here theoretically. The idea is assessed by conducting ab initio computations on Li+/MgnF2n+1-2mOm compounds (n=2, 3; m=0-3) and analyzing their performance as potential Li-ion battery electrolytes. The Mg3F7 cluster, with large electron binding energy (EA of 7.93 eV), has been proven to serve as a building block for lithium salts. It is shown that, apart from high electronic stability, the new superhalogen-based electrolytes exhibit a set of desirable properties, including a large band gap, high electrolyte stability window, easy mobility of the Li+, and favorable insensitivity to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号