首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3− anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical –CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3− units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3− anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1–4 was traced.  相似文献   

2.
A series of isostructural cyano‐bridged MnIII(h.s.)–MIII(l.s.) alternating chains, [MnIII(5‐TMAMsalen)MIII(CN)6] ? 4H2O (5‐TMAMsalen2?=N,N′‐ethylenebis(5‐trimethylammoniomethylsalicylideneiminate), MnIII(h.s.)=high‐spin MnIII, MIII(l.s.)=low‐spin CoIII, Mn? Co ; FeIII, Mn? Fe ; MnIII, Mn? Mn ; CrIII, Mn? Cr ) was synthesized by assembling [MnIII(5‐TMAMsalen)]3+ and [MIII(CN)6]3?. The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [‐MnIII‐NC‐MIII‐CN‐] repeating motif, for which the ‐NC‐MIII‐CN‐ motif is provided by the [MIII(CN)6]3? moiety adopting a trans bridging mode between [MnIII(5‐TMAMsalen)]3+ cations. The MnIII and MIII ions occupy special crystallographic positions: a C2 axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn–Teller axis of the MnIII(h.s.) ion is perpendicular to the N2O2 plane formed by the 5‐TMAMsalen tetradentate ligand. These Jahn–Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn‐Naxis‐C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter‐chain M???M distance being relatively large at 9 Å due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5‐TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn? Fe and Mn? Mn display intra‐chain ferromagnetic interactions, whereas Mn? Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single‐chain magnet (SCM) behavior of these three systems, whereas Mn? Co is merely paramagnetic with SMn=2 and D/kB=?5.3 K (D being a zero‐field splitting parameter). At low temperatures, the Mn? M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite‐chain and finite‐chain regimes for the SCM behavior. These isostructural hetero‐spin SCMs offer a unique series of alternating [‐Mn‐NC‐M‐CN‐] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

3.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

4.
The spin-crossover (SCO) and charge-transfer (CT) phenomena, the switching processes between two distinguishable magnetic states, are promising for developing materials capable of sophisticated memory and sensing functionalities. The majority of SCO systems are based on iron(II) complexes. However, cobalt(II)-2,2′:6′,2′′-terpyridine (terpy) systems emerge as a promising alternative. In this work, new complex salts [CoII(terpy)2]2[MoIV(CN)8] ⋅ 15H2O, Co2Mo (H2O), and [CoII(terpy)2]3[WV(CN)8]2 ⋅ 12H2O, Co3W2 (H2O) were synthesized and physiochemically characterized. Structural studies for both compounds revealed [Co(terpy)2]2+ layers pillared by octacyanidometallate anions and completed with water molecules between them. Magnetic studies confirmed that the (de)solvated phases of both complexes exhibit partial SCO on the cobalt(II) centers: CoII−LS (SCo(II)-LS=1/2)↔CoII−HS (SCo(II)-HS=3/2). Moreover, handling dehydrated samples in a high-humidity environment leads to partial recovery of previous magnetic properties via humidity-induced SCO for Co2Mo : CoII−HS→CoII−LS, and the new phenomenon of isothermal humidity-activated charge-transfer-induced spin transition, which we define here as HACTIST, for Co3W2 : CoII−HS⋅⋅⋅WV (SCo(II)-HS=3/2 and SW(V)=1/2)→CoIII−LS⋅⋅⋅WIV (SW(IV)=0 and SCo(III)-LS=0). These comprehensive studies shed light on the water-solvation-dependent spin transitions in Co(II)-octacyanidometallate(IV/V) complexes.  相似文献   

5.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

6.
Kou  Hui-Zhong  Gao  Dong-Zhao  Bu  Wie-Ming  Fan  Yu-Guo  Liao  Dai-Zheng  Cheng  Peng  Jiang  Zong-Hui  Yan  Shi-Ping  Wang  Geng-Lin  Li  Tian-Jian  Tang  Jin-Kui 《Transition Metal Chemistry》2001,26(4-5):457-460
Two CrIII–FeIII complexes, K2[Cr(salen)(H2O)][Fe(CN)6]·H2O (1) and [trans-Cr(tn)2Cl2]3[Fe(CN)6]·6H2O (2), have been prepared. Crystal structure determination shows that complex (2) possesses an ionic salt structure. General physical measurements and magnetic studies indicate that (1) assumes a cyanide-bridged dinuclear structure, and that the CrIII–FeIII magnetic coupling through the cyanide bridge is antiferromagnetic, which can be rationalized by the overlap of magnetic orbitals of the same symmetry.  相似文献   

7.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

8.
The cyanidocobaltate of formula fac-PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN ( 1 ) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5-dimethylpyrazol-1-yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1-methylimidazol-2-yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O ( 2 ), whereas the self-assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two-dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN} ( 3 ). These compounds were structurally characterized via single crystal X-ray analysis and their spectroscopic (FTIR, UV-Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low-spin⇔high-spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.  相似文献   

9.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

10.
A one‐dimensional cyanide‐bridged coordination polymer, poly[[aquadi‐μ‐cyanido‐κ4C:N‐hexacyanido‐κ6C‐(dimethylformamide‐κO)bis(3,4,7,8‐tetramethyl‐1,10‐phenanthroline‐κ2N,N′)terbium(III)molybdate(V)] 4.5‐hydrate], [MoTb(CN)8(C16H16N2)2(C3H7NO)(H2O)]·4.5H2O}n, has been prepared and characterized through IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The compound consists of one‐dimensional chains in which cationic [Tb(tmphen)2(DMF)(H2O)]3+ (tmphen is 3,4,7,8‐tetramethyl‐1,10‐phenanthroline) and anionic [MoV(CN)8]3− units are linked in an alternating fashion through bridging cyanide ligands. Neighbouring chains are connected by three types of hydrogen bonds (O—H...O, O—H...N and C—H...O) and by π–π interactions to form a three‐dimensional supramolecular structure. In addition, magnetic investigations show that ferromagnetic interactions exist in the compound.  相似文献   

11.
Three cyanide-bridged dodecanuclear macrocyclic wheel-like complexes [Cr(bpmb)(CN)2]6[Mn(5-Brsalpn)]6·12H2O (1), [Co(bpmb)(CN)2]6[Mn(5-Brsalpn)]6·12H2O (2) and [Co(bpmb)(CN)2]6[Mn(5-Clsalpn)]6·24H2O·8CH3CN (3) [bpmb2−= 1,2-bis(pyridine-2-carboxamido)-4-methylbenzenate dianion; 5-Brsalpn2− = N,N′-propylenebis(5-bromosalicylideneaminato) dianion; 5-Clsalpn2− = N,N′-propylenebis(5-chlorosalicylideneaminato) dianion] have been synthesized and their crystal structures and magnetic properties have been investigated. The three compounds are structurally isomorphous and consist of alternating Mn(III)-Schiff base cations and [M(bpmb)(CN)2] anions, generating cyanide-bridged nanosized dodecanuclear macrocyclic structures with an approximate diameter of 2 nm. The study of the magnetic properties of complex 1 reveals an antiferromagnetic interaction between the Cr(III) and Mn(III) ions through the cyanide bridges. A best-fit to the magnetic susceptibility of the complex leads to a magnetic coupling constant of J CrMn = −2.65(6) cm−1 on the basis of a one-dimensional alternating chain model with the Hamiltonian $ H = - J_{CrMn} \sum\limits_{i = 0}^N {S_i \cdot S_{i + 1} } $ H = - J_{CrMn} \sum\limits_{i = 0}^N {S_i \cdot S_{i + 1} } .  相似文献   

12.
The crystal structures of two pentacyanido(L) ferrate(III) complexes, [P(C6H5)4]2[Fe(CN)5(prz)]·4H2O 1, [P(C6H5)4]2[Fe(CN)5(4,4′-bipy)]·3H2O 2, have been solved. Within the two complex anions the iron atoms are hexacoordinated by five cyanido ligands, the sixth position being occupied by the nitrogen atom arising from pyrazine and, respectively, 4,4′-bipyridine. The electrochemical properties of compounds 1, 2 and of the azido derivative, (Ph4As)2[Na(H2O)4][Fe(CN)5(N3)] 3, have been investigated by cyclic voltammetry. A relatively complicated redox behavior of these complexes was found, due especially to the electron transfer involving the central metallic ion that changes reversibly its oxidation state (FeIII/FeII redox site) and also to the coligand (4,4′-bipyridine, pyrazine or azide) which intervenes in a distinct electron transfer. The experimental data have been rationalized through DFT calculations.  相似文献   

13.
The reaction of alkali metal hexacyanoferrate(II/III) with (CH2)6N4 (hexamethylenetetramine, abbreviated HMT) in an acidic medium yielded crystalline compounds of stoichiometries HK2[Fe111(CN)6]·2HMT·4H2O, H2K2[Fe11(CN)6]·2HMT·4H2O, and HNa2[Fe111(CN)6]· 2HMT·5H2O. Their crystal structures are based on a packing of three molecular components: neutral and/orprotonated HMT, hexacyanoferrate, and an alkali metal ion-water cluster. The resulting three-dimensional supramolecular framework is constructed from the coordination of the alkali metal ion by aqua ligands as well as [Fe(CN)6]{n–} and HMT units, and further stabilization is achieved by hydrogen bonding between water molecules and the noncoordinated nitrogen atoms of HMT and hexacyanoferrate.  相似文献   

14.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

15.
Cyanide-bridged trinuclear heterometallic Ag(I)-Mn(III) complex {[Mn(TClPP)(H2O)]2[Ag(CN)2]}2 · 2Br · 2C3H6O · 3H2O (I) and ion-pair complex {[Mn(TClPP)(CH3OH)2][Ag(CN)2]} · 0.5H2O (II) have been synthesized with [Mn(TClTPP)(H2O)2]Br (H2TClTPP = meso-tetra(4-chlorophenyl)porphyrin) as assembling segment and K[Ag(CN)2] as building block by using different crystallization method. These two complexes have been characterized by elemental analysis, IR spectroscopy and X-ray structure determination. In the trinuclear complex I, [Ag(CN)2]? as bidentate ligand coordinates with the two central Mn(III) atom of [Mn(TClPP)(H2O)2]+ through its two trans cyanide groups to form the complex cation of [Mn(TClPP)(H2O)]2[Ag(CN)2]+, which further constructs the neutral complexes with the help of one Br? as balanced anion. For the ion-pair complex II composed by free [Mn(TClPP)(CH3OH)2]+ cation and free [Ag(CN)2]? anion, it can be linked into one-dimensional supramolecular structure with the dependence of the intermolecular O-H...N and O-H...O hydrogen bond interactions.  相似文献   

16.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

17.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

18.
Two cyano-bridged bimetallic complexes {[M2(H2O)4Mo(CN)8] · 4H2O} n [M = Mn (I) and Co (II)] have been synthesized and structurally characterized. The single-crystal X-ray analyses reveal that these two compounds have three-dimensional structures, and cell parameters are similar in a tetragonal system with space group I $ \bar 4 $ \bar 4 . In the both complexes, each [Mo(CN)8]4− building block is linked with M2+ [M = Mn and Co] ions through its eight CN ligands. Each M2+ center is connected to four Mo units forming a three-dimensional framework. In addition, magnetic studies of these complexes have been presented.  相似文献   

19.
Summary The new complex double saltscw-[Co(NH3)(en)2(H2O)]2 [M(CN)4]3 (en = ethylenediamine; M = Ni, Pd or Pt),cis-[Co(NH3(en)2(H2O)]2[FeNO(CN)5]3 andcis-[Co(NH3)(en)2(H2O)][Co(CN)6] have been synthesized and by anation in the solid state the corresponding new dinuclear complexes with a cyano bridgecis- ortrans-[(NH3)(en)2Co-NC-M(CN)3]2 [M(CN)4] (M = Ni, Pd or Pt);cis-, trans-[(NH3)(en)2Co-NC-FeNO(CN)4]2[FeNO(CN)5] andcis-[(NH3)(en)2Co-NC-Co(CN)5 have been prepared. The complexes have been characterized by chemical analysis, t.g. measurements, and by i.r. and electronic spectroscopy. With [Ni(CN)4][2– and [Co(CN)in]6 3– only thecis-isomer is produced; with [Pd(CN)4]2–, [Pt(CN)4]2– and [FeNO(CN)5]2– thetrans- isomer is the dominant species. The dinuclear complex derived from [Pt(CN)4]2– shows strong Pt-Pt interactions both in the solid state and in solution.  相似文献   

20.
Self-assembly of the precursor [Cu(L)]2+ (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) with hexacyanometalate [Fe(CN)6]3− produces a 3-D cyano-bridged Cu(II)–Fe(III) bimetallic assembly, [CuL]2[Fe(CN)6]ClO4 · H2O (1), characterized by single-crystal X-ray diffraction studies, and magnetic measurements. The crystallographic determination reveals that each hexacyanoferromate(III) ion connects four copper(II) ions using four co-planar CN groups which axially coordinate to the copper ion in a trans fashion forming trans-CuL(N≡C)2 moieties in (1). Magnetic studies reveal that (1) displays a ferromagnetic interaction between Cu(II) and Fe(III) through the CN linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号