首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Metal‐free catalysts are of great importance and alternative candidates to conventional metal‐based catalysts for many reactions. Herein, several types of metal–organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN‐224‐templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN‐224‐700) is composed of amorphous carbon coated with well‐defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal‐free catalyst, PCN‐224‐700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4‐nitrophenol to 4‐aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN‐224‐700 catalyst well.  相似文献   

2.
Considerable attention has been paid to the utilization of CO2, an abundant carbon source in nature. In this regard, porous catalysts have been eagerly explored with excellent performance for photo-/electrocatalytic reduction of CO2 to high valued products. Metal–organic frameworks (MOFs), featuring large surface area, high porosity, tunable composition and unique structural characteristics, have been widely exploited in catalytic CO2 reduction. This Minireview first reports the current progress of MOFs in CO2 reduction. Then, a specific interest is focused on MOFs in photo-/electrocatalytic reduction of CO2 by modifying their metal centers, organic linkers, and pores. Finally, the future directions of study are also highlighted to satisfy the requirement of practical applications.  相似文献   

3.
《中国化学快报》2021,32(11):3505-3508
The conversion of CO2 under mild condition is of great importance because these reactions involving CO2 can not only produce value-added chemicals from abundant and inexpensive CO2 feedstock but also close the carbon cycle. However, the chemical inertness of CO2 requires the development of high-performance catalysts. Herein, Ag nanoparticles/MIL-100(Fe) composites were synthesized by simple impregnation-reduction method and employed as catalysts for the photothermal carboxylation of terminal alkynes with CO2. MIL-100(Fe) could stabilize Ag nanoparticles and prevent them from aggregation during catalytic process. Taking the advantages of photothermal effects and catalytic activities of both Ag nanoparticles and MIL-100(Fe), various aromatic alkynes could be converted to corresponding carboxylic acid products (86%–92% yields) with 1 atm CO2 at room temperature under visible light irradiation when using Ag nanoparticles/MIL-100(Fe) as photothermal catalysts. The catalysts also showed good recyclability with almost no loss of catalytic activity for three consecutive runs. More importantly, the catalytic performance of Ag nanoparticles/MIL-100(Fe) under visible light irradiation at room temperature was comparable to that upon heating, showing that the light source could replace conventional heating method to drive the reaction. This work provided a promising strategy of utilizing solar energy for achieving efficient CO2 conversion to value-added chemicals under mild condition.  相似文献   

4.
狄正玲  朱靖  戴磊  孟伟  李跃华  何章兴  王岭 《电化学》2019,25(6):781-791
氮掺杂的多孔碳材料可作为氧还原反应的催化剂,本文借助ZIF-67富氮多孔的特殊结构,采用湿式逐步还原法将Ag嵌入ZIF-67孔腔内,然后在Ar中碳化成功地制备了Ag/Co双金属嵌入的氮掺杂的多孔碳复合材料(Ag/Co@NC)作为氧还原反应的催化剂. 为了证明Ag的突出作用,同时在Ar中碳化了ZIF-67制备了Co嵌入的氮掺杂的多孔碳材料(Co@NC). 利用扫描电子显微镜、透射电子显微镜、X射线衍射、X射线光电子能谱以及比表面积分析对材料的显微形貌、物相组成、结构进行分析,采用循环伏安和线性扫描极化曲线对材料的氧还原催化活性和催化稳定性进行研究. 结果表明,Ag的嵌入未改变ZIF-67的晶体结构,但是大大提高了材料的氧还原催化活性. Ag/Co@NC材料的半波电位和起始电位均高于Co@NC材料,且其在1000次循环伏安测试前后的半波电位变化仅为30 mV,显示出很好的催化稳定性和甲醇耐受性,可作为燃料电池和金属-空气电池的阴极催化剂.  相似文献   

5.
作为主要温室气体,二氧化碳(CO_2)导致了全球变暖与海洋酸化,同时CO_2也是重要的C1资源。在温和条件下,利用催化剂将CO_2高效、高选择性地转化为具有高附加值的化学品,对缓解CO_2给气候变化带来的负面影响和减少对化石能源的依赖具有重要意义。作为一类新兴的多孔晶态材料,金属-有机框架(metal-organic frameworks,MOFs)同时具备多相催化剂的可分离回收再利用以及均相催化剂的高选择性和高活性等性质,是优良的多相催化剂。本文主要聚焦功能化MOFs催化剂的结构特性及其在催化转化CO_2方面的应用,着重介绍该领域近期的研究进展,并对今后该领域的研究趋势及应用前景进行了展望。  相似文献   

6.
The development of multifunctional heterogeneous catalysts with high porosity and remarkable catalytic activity still remains a challenge. Herein, four highly porous metalloporphyrin covalent ionic frameworks (CIFs) were synthesized by coupling 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (TNPP) with 3,8-diamino-6-phenylphenanithridine (NPPN) or 5,5′-diamino-2,2′-bipyridine (NBPy) followed by ionization with bromoethane (C2H5Br) or dibromoethane (C2H4Br2) and then metalization with Zn or Co. The resulting CIFs showed high efficiency in catalyzing the cycloaddition of propylene oxide (PO) with CO2 to form propylene carbonate (PC). All of the Zn-containing CIF catalysts were able to catalyze the cycloaddition reaction with a PC yield greater than 97 %. The TNPP/NBPy (CIF2) catalyst ionized with C2H4Br2 and metalized with Zn (Zn-CIF2-C2H4) exhibited the highest catalytic activity among the synthesized catalysts. The high catalytic performance of Zn-CIF2-C2H4 is related to its high porosity (577 m2 g−1), high Br:metal ratio (1:3.89), and excellent synergistic action between the Lewis acidic Zn sites and the nucleophilic Br ions. Zn-CIF2-C2H4 is sufficiently stable that greater than 94 % PC yield could be obtained even after six cycles. In addition, Zn-CIF2-C2H4 could catalyze the cycloaddition of several other epoxides with CO2. These highly porous materials are promising multifunctional and efficient catalysts for industrially relevant reactions.  相似文献   

7.
Heterostructural metal/metal oxides are the very promising substituents of noble‐metal catalysts; however, generation and further stabilization of accessible metal/metal oxide heterojunctions are very difficult. A strategy to encapsulate and stabilize Cu/Cu2O nanojunctions in porous organic frameworks in situ is developed by tuning the acrylate contents in copper‐based metal–organic frameworks (Cu‐MOFs) and the pyrolytic conditions. The acrylate groups play important roles on improving the polymerization degree of organic frameworks and generating and stabilizing highly dispersed and accessible Cu/Cu2O heteronanojunctions. As a result, pyrolysis of the MOF ZJU‐199, consisting of three acrylates per ligand, generates abundant heterostructural Cu/Cu2O discrete domains inside porous organic matrices at 350 °C, demonstrating excellent catalytic properties in liquid‐phase hydrogenation of furfural into furfuryl alcohol, which are much superior to the non‐noble metal‐based catalysts.  相似文献   

8.
The catalytic performance of metal–organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent‐free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent‐free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.  相似文献   

9.
An enhancement in catalytic alcohol oxidation activity is attributed to the presence of nitrogen heteroatoms on the external surface of a support material. The same Pd particles (3.1–3.2 nm) were supported on polymeric carbon–nitrogen supports and used as catalysts to selectively oxidize benzyl alcohol. The polymeric carbon–nitrogen materials include covalent triazine frameworks (CTF) and carbon nitride (C3N4) materials with nitrogen content varying from 9 to 58 atomic percent. With comparable metal exposure, estimated by X‐ray photoelectron spectroscopy, the activity of these catalysts correlates with the concentration of nitrogen species on the surface. Because the catalysts showed comparable acidic/basic properties, this enhancement cannot be ascribed to the Lewis basicity but most probably to the nature of N‐containing groups that govern the adsorption sites of the Pd nanoparticles.  相似文献   

10.
The development of efficient and low energy‐consumption catalysts for CO2 conversion is desired, yet remains a great challenge. Herein, a class of novel hollow porous carbons (HPC), featuring well dispersed dopants of nitrogen and single Zn atoms, have been fabricated, based on the templated growth of a hollow metal–organic framework precursor, followed by pyrolysis. The optimized HPC‐800 achieves efficient catalytic CO2 cycloaddition with epoxides, under light irradiation, at ambient temperature, by taking advantage of an ultrahigh loading of (11.3 wt %) single‐atom Zn and uniform N active sites, high‐efficiency photothermal conversion as well as the hierarchical pores in the carbon shell. As far as we know, this is the first report on the integration of the photothermal effect of carbon‐based materials with single metal atoms for catalytic CO2 fixation.  相似文献   

11.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

12.
Ni,N‐doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen‐coordinated, single Ni atom active sites. However, experimentally confirming Ni?N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile‐derived Ni,N‐doped carbon electrocatalysts (Ni‐PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X‐ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square‐planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.  相似文献   

13.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   

14.
The chemical stability of metal–organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki–Miyaura cross‐coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL‐101‐NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL‐101‐NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.  相似文献   

15.
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity has emerged as the most promising technique for CO2 conversion, making it possible to realize a carbon-neutral cycle. Highly efficient, robust, and cost-effective catalysts are highly demanded for the near-future practical applications of CO2RR. Previous studies on atomically dispersed metal-nitrogen (M-Nx) sites constituted of earth abundant elements with maximum atom-utilization efficiency have demonstrated their performance towards CO2RR. This review summarizes recent advances on a variety of M-Nx sites-containing transition metal-centered macrocyclic complexes, metal organic frameworks, and M-Nx-doped carbon materials for efficient CO2RR, including both experimental and theoretical studies. The roles of metal centers, coordinated ligands, and conductive supports on the intrinsic activity and selectivity, together with the importance of reaction conditions for improved performance are discussed. The mechanisms of CO2RR over these M-Nx-containing materials are presented to provide useful guidance for the rational design of efficient catalysts towards CO2RR.  相似文献   

16.
Heteroatom‐doped porous carbon materials have exhibited promising applications in various fields. In this work, sulfur, nitrogen co‐doped carbon materials (SNCs) with abundant pore structure were prepared by pyrolysis of sulfur, nitrogen‐containing porous organic polymers (POPs) mixed with nano‐CaCO3 at high temperature. Among the resultant materials, SNC‐Ca‐850 possesses a relatively high level of doped heteroatoms and exhibits an excellent catalytic performance for the selective oxidation of benzylic C?H bonds. It is noteworthy that nano‐CaCO3 increases the doped sulfur content in the synthesized carbon materials to a large extent and impacts the existence modes of sulfur. In addition, it enhances the porous structure and specific surface area of the resultant SNCs significantly. This work provides a viable strategy to promote the doping of sulfur into carbon materials during the pyrolysis process.  相似文献   

17.
In this article we discuss those materials that have recorded the highest adsorption capacities for the greenhouse gas CO2 under ambient conditions as well as at different temperatures and pressures. For convenience, the materials have been categorized under four categories, viz., porous carbon, metal–organic, zeolite and mesoporous silica, and porous organic frameworks. It has been found that the gas adsorption property significantly relies on several factors such as high surface area and pore volume and the presence of N‐, O‐ and S‐containing moieties. The presence of a microporous structure and strong interaction between the CO2 molecules with the framework through H‐bonding or dipole–quadrupole interactions facilitates adsorption of the gas.  相似文献   

18.
The development of nonprecious metal-based electrocatalysts with remarkable catalytic activity and long-cycling lifespan toward oxygen reduction reaction (ORR) and evolution reaction (OER) is especially important for rechargeable zinc–air batteries (ZABs). Herein, monodispersed Co9S8 nanoparticles embedded in nitrogen-doped hierarchically porous hollow carbon spheres (Co9S8 NPs/NHCS) are synthesized through a template-assisted strategy followed by a co-assembly, thermal annealing, and sulfurization process. Benefiting from larger specific surface area, hierarchically porous hollow structure, and carbon nanotubes self-growth, the obtained Co9S8 NPs/NHCS-0.5 electrocatalyst exhibits decent performance for ORR (E1/2=0.85 V) and OER (E10=1.55 V). A rechargeable ZAB assembled using the Co9S8 NPs/NHCS-0.5 as air cathode delivers a maximum power density of 116 mW cm−2, high open circuit voltage of 1.47 V, and good durability (no obvious voltage decay after 1200 cycles (200 hours)). Such a hierarchically porous hollow structure of Co9S8 NPs/NHCS-0.5 provides a confined space shell and an interconnected hollow core to achieve outstanding bifunctional catalytic activity and cycling stability, which surpass the benchmark Pt/C-RuO2.  相似文献   

19.
Electrochemical reduction of CO2 into value‐added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal–organic frameworks as the carbon precursor, and initial work on CO2 electroreduction using the MoP‐based catalyst were carried out. It was discovered that MoP nanoparticles supported on In‐doped porous carbon had outstanding performance for CO2 reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm?2, respectively, when using ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In2O3 cooperated very well in catalyzing the CO2 electroreduction.  相似文献   

20.
Herein, a series of porous nano‐structured carbocatalysts have been fused and decorated by Mo‐based composites, such as Mo2C, MoN, and MoP, to form a hybrid structures. Using the open porosity derived from the pyrolysis of metal–organic frameworks (MOFs), the highly dispersive MoO2 small nanoparticles can be deposited in porous carbon by chemical vapor deposition (CVD). Undergoing different treatments of carbonization, nitridation, and phosphorization, the Mo2C‐, MoN‐, and MoP‐decorated carbocatalysts can be selectively prepared with un‐changed morphology. Among these Mo‐based composites, the MoP@Porous carbon (MoP@PC) composites exhibited remarkable catalytic activity for the hydrogen evolution reaction (HER) in 0.5 m H2SO4 aqueous solution versus MoO2@PC, Mo2C@PC, and MoN@PC. This study gives a promising family of multifunctional lab‐on‐a‐particle architectures which shed light on energy conversion and fuel‐cell catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号