首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simple strategies to obtain magnesium complexes with the soft chelating diylidic ligand [Ph2PCHPPh2(fluorenylidene)]? (dppmflu?) were developed to evaluate the influence of the hard acid (cation) and soft base (anion) mismatch on the stability and reactivity of the formed derivatives. Deprotonation of the precursor Ph2PCH2PPh2(flu) (dppmfluH) by an alkylmagnesium derivative or magnesium amide provided access to [{Mg(dppmflu)(μ‐nBu)}2], [Mg(dppmflu){N(SiMe3)2}], and [{Mg(dppmflu)(μMe)}2], which were used as starting materials for further investigations. The reaction of [{Mg(dppmflu)(μ‐nBu)}2] with PhSiH3 in the presence of THF allowed isolation of the magnesium hydride complex [{Mg(dppmflu)(μH)(thf)}2] without a stabilizing nitrogen donor ligand. Prolonged heating enforced ligand redistribution and [{Mg(dppmflu)(μH)(thf)}2] was converted to [Mg(dppmflu)2] and MgH2. The homoleptic derivative [Mg(dppmflu)2], in which the magnesium center is in a very soft ligand environment, can open a THF molecule by frustrated Lewis pair reactivity to give [{Mg(dppmflu)(μOC4H8dppmflu)}2].  相似文献   

2.
The reactivity of the geminal frustrated Lewis pair (FLP) (F5C2)3SnCH2P(tBu)2 ( 1 ) was explored by reacting it with a variety of small molecules (PhOCN, PhNCS, PhCCH, tBuCCH, H3CC(O)CH=CH2, Ph[C(O)]2Ph, PhN=NPh and Me3SiCHN2), featuring polar or non-polar multiple bonds and/or represent α,β-unsaturated systems. While most adducts are formed readily, the binding of azobenzene requires UV-induced photoisomerization, which results in the highly selective complexation of cis-azobenzene. In the case of benzil, the reaction does not lead to the expected 1,2- or 1,4-addition products, but to the non-stereoselective (tBu)2PCH2-transfer to a prochiral keto function of benzil. All adducts of 1 were characterised by means of multinuclear NMR spectroscopy, elemental analyses and X-ray diffraction experiments.  相似文献   

3.
Salt metathesis of 1-methyl-2,4,6-triphenylphosphacyclohexadienyl lithium and chlorobis(pentafluorophenyl)borane affords a 1-phospha-7-bora-norbornadiene derivative 2 . The C≡N triple bonds of nitriles insert into the P−B bond of 2 with concomitant C−B bond cleavage, whereas the C≡C bonds of phenylacetylenes react with 2 to form λ4-phosphabarrelenes. Even though 2 must formally be regarded as a classical Lewis adduct, the C≡N and C≡C activation processes observed (and the mild conditions under which they occur) are reminiscent of the reactivity of frustrated Lewis pairs. Indeed, NMR and computational studies give insight into the mechanism of the reactions and reveal the labile nature of the phosphorus–boron bond in 2 , which is also suggested by detailed NMR spectroscopic studies on this compound. Nitrile insertion is thus preceded by ring opening of the bicycle of 2 through P−B bond splitting with a low energy barrier. By contrast, the reaction with alkynes involves formation of a reactive zwitterionic methylphosphininium borate intermediate, which readily undergoes alkyne 1,4-addition.  相似文献   

4.
Rare-earth metal cations have been used rarely as Lewis-acidic components in the chemistry of frustrated Lewis pairs (FLPs). Herein, we report the first cerium/phosphorus system ( 2 ) employing a heptadentate N4P3 ligand, which exhibits triple FLP-type reactivity towards a series of organic substrates, including isocyanates, isothiocyanates, diazomethane, and azides on a single rare-earth Lewis acidic Ce center. This result shows that the Ce center and three P atoms in 2 could simultaneously activate three equivalents of small molecules under mild conditions. This study broadens the diversity of FLPs and demonstrates that rare earth based FLP exhibit unique properties compared with other FLP systems.  相似文献   

5.
A pyridone borane complex that liberates dihydrogen under mild conditions is described. The reverse reaction, dihydrogen activation by the formed pyridonate borane complex, is achieved under moderate H2 pressure (2 bar) at room temperature. DFT and DLPNO‐CCSD(T) computations reveal that the active form of the pyridonate borane complex is a boroxypyridine that can be described as a single component frustrated Lewis pair (FLP). Significantly, the boroxypyridine undergoes a chemical transformation to a neutral pyridone donor ligand in the course of the hydrogen activation. This unprecedented mode of action may thus, in analogy to metal‐ligand cooperation, be regarded as an example of boron‐ligand cooperation.  相似文献   

6.
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal‐free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.  相似文献   

7.
The NHC–borane adduct (IBn)BH3 ( 1 ) (NHC= N‐heterocyclic carbene; IBn=1,3‐dibenzylimidazol‐2ylidene) reacts with [Ph3C][B(C6F5)4] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC–borenium salts 2 and 3 . The planar doubly ring closed product [C3H2(NCH2C6H4)2B][B(C6F5)4] is resistant to quaternization at boron by Et2O coordination, but forms classical Lewis acid–base adducts with the stronger donors Ph3P, Et3PO, or 1,4‐diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3P selectively yields the unusual oligomeric borenium salt trans‐[(C3H2(NCH2C6H4)2B)2(C3H2(NCHC6H4)2B)][B(C6F5)4] ( 7 ).  相似文献   

8.
Alkyne complexes with vicinal substitution by a Lewis acid and a Lewis base at the coordinated alkyne are prospective frustrated Lewis pairs exhibiting a particular mutual distance and, hence, a specific activation potential. In this contribution, investigations on the generation of a WII alkyne complex bearing a phosphine as Lewis base and a carbenium group as Lewis acid are presented. Independently on potential substrates added, an intramolecular cyclisation product was always isolated. A subsequent deprotonation step led to an unprecedented side-on λ5-phosphinyne complex, which is interpreted as highly zwitterionic according to visible absorption spectroscopy supported by TD-DFT. Low-temperature 31P NMR and EPR spectroscopic measurements combined with time-dependent IR-spectroscopic monitoring provided insights in the mechanism of the cyclisation reaction. Decomposition of the multicomponent IR spectra by multivariate curve resolution and a kinetic hard-modelling approach allowed the derivation of kinetic parameters. Assignment of the individual IR spectra to potential intermediates was provided by DFT calculations.  相似文献   

9.
The germylene species (CH{(CMe)(2,6-iPr2C6H3N)}2)GePCO 1 is shown to react with the Lewis acids (E(C6F5)3 E=B, Al). Nonetheless, 1 participates in FLP chemistry with electron deficient alkynes or olefins, acting as an intramolecular FLP. In contrast, in the presence of B(C6F5)3 and an electron rich alkyne, 1 behaves as Ge-based nucleophile to effect intermolecular FLP addition to the alkyne. This reactivity demonstrates that the reaction pathway is controlled by the nature of the electrophile and nucleophile generated in solution, as revealed by extensive DFT calculations.  相似文献   

10.
A bulky substituted stannane Ar*SnH3 (Ar*=2,6‐(2′,4′,6′‐triisopropylphenyl)phenyl) was treated with the well‐known frustrated Lewis pair (FLP) Pt Bu3/B(C6F5)3 in varying stoichiometries. To some degree, hydride abstraction and adduct formation is observed, leading to [Ar*SnH2(Pt Bu3)]+ which is rather unreactive toward further dehydrogenation. In a competing process, the FLP proved to be capable of completely striping‐off hydrogen and hydrides to generate the first cationic phosphonio‐stannylene [Ar*Sn(Pt Bu3)]+. This behavior provides insight into the activation/abstraction mechanism processes involved in these Group 14 hydride derivatives.  相似文献   

11.
The potential of a dicationic strontium ansa-arene complex for Lewis acid catalysis has been explored. The key to its synthesis was a simple salt metathesis from SrI2 and 2 Ag[Al(ORF)4], giving the base-free strontium-perfluoroalkoxyaluminate Sr[Al(ORF)4]2 (ORF=OC(CF3)3). Addition of an ansa-arene yielded the highly Lewis acidic, dicationic strontium ansa-arene complex. In preliminary experiments, the complex was successfully applied as a catalyst in CO2-reduction to CH4 and a surprisingly controlled isobutylene polymerization reaction.  相似文献   

12.
A room‐temperature‐stable crystalline cyclic (alkyl)(amino)nitrenium cation 2 features cationic nitrogen atom with a smaller HOMO–LUMO gap compared to that of a 1,2,3‐triazolium 5 (an N‐heterocyclic nitrenium cation). The low‐lying LUMO of 2 results in an enhanced electrophilicity, which allowed for the formation of Lewis adducts with neutral Lewis bases, such as Me3P, nBu3P, and IiPr. The N‐based Lewis acid 2 also forms an FLP with tBu3P but subsequently reacts with (PrS)2 to cleave the S?S bond. Both experimental and theoretical results suggest that the Lewis acidity of 2 is stronger than its N3 analogues.  相似文献   

13.
The chemistry of dicationic diboranes with two BII atoms that are engaged in direct B−B bonding is by enlarge unexplored, although these molecules have intriguing properties due to their combined Lewis acidic and electron-donor properties. Unsymmetric dicationic diboranes are extremely rare, but especially attractive due to their polarized B−B bond. In this work we report the directed synthesis of several stable unsymmetric dicationic diboranes by reaction between the electron-rich ditriflato-diborane B2(hpp)2(OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidinate) and phosphino-pyridines, establishing B−N and B−P bonds with the diborane concomitant with triflate elimination. In the case of 2-((ditertbutylphosphino)methyl)pyridine, the B−N bond is formed instantly, but the B−P bond formation requires (due to steric constraints) several days at ambient conditions for completion, creating an intermediate that could be used for frustrated Lewis pair (FLP)-like chemistry. Here we test its reaction with an aldehyde, and propose a new type of FLP-like chemistry.  相似文献   

14.
15.
The active six-membered cyclo-FLP 6 undergoes a rapid P/B addition reaction to carbon dioxide. At elevated temperature, the resulting heterobicyclo[2.2.2]octane derived product 7 undergoes ring opening and equilibrates with the cyclotetramer (7)4 . In the large macrocyclic structure, four monomeric six-membered cyclo-FLP units are connected by four CO2 molecules to form the supramolecular ring system. The P/B cyclo-FLP 6 undergoes a variety of additional cycloaddition reactions.  相似文献   

16.
17.
The phosphino-phosphonium cations of the form [R3PPR′2]+ are labile and provide access to the constituent Lewis acidic and Lewis basic fragments. This permits frustrated Lewis pair-type addition reactions to alkynes, affording unprecedented phosphino-phosphination reactions and giving cations of the form [cis-R3PCHC(R′′)PR′2]+. This reactivity is further adapted to prepare several examples of a rare class of dissymmetric cis-olefin-linked bidentate phosphines.  相似文献   

18.
Frustrated Lewis pairs (FLPs) based on sterically encumbered anilines and the Lewis acid B(C6F5)3 were found to react with terminal alkynes effecting intermolecular hydroamination affording iminium alkynylborate species of the form [RPhN?C(R′)Me][R′CCB(C6F5)3]. In these cases, the reagent ratio of borane, aniline, and alkyne is 1:1:2. These reactions could also be performed in an intramolecular fashion by using anilines with alkynyl substituents effecting cyclization reactions. The use of 10 mol % B(C6F5)3 under a H2 atmosphere provides a one‐pot synthesis of the pyrrolidine 12 , the piperidines 13 – 15 , the azepane 16 , the isoindoline 17 , and the benzoxazine 18 .  相似文献   

19.
Neutral phosphidozirconocene complexes [Cp2Zr(PR2)Me] (Cp=cyclopentadienyl; 1a : R=cyclohexyl (Cy); 1b : R=mesityl (Mes); 1c : R=tBu) undergo insertion into the Zr?P bond by non‐enolisable carbonyl building blocks (O=CR′R′′), such as benzophenone, aldehydes, paraformaldehyde or CO2, to give [Cp2Zr(OCR′R′′PR2)Me] ( 3 – 7 ). Depending on the steric bulk around P, complexes 3 – 7 react with B(C6F5)3 to give O‐bridged cationic zirconocene dimers that display typical frustrated Lewis pair (FLP)/ambiphilic ligand behaviour. Thus, the reaction of {[Cp2Zr(μ‐OCHPhPCy2)][MeB(C6F5)3]}2 ( 10a ) with chalcone results in 1,4 addition of the Zr+/P FLP, whereas the reaction of {[Cp2Zr(μ‐OCHFcPCy2)][MeB(C6F5)3]}2 ( 11a ; Fc=(C5H4)CpFe) with [Pd(η3‐C3H5)Cl]2 yields the unique Zr?Fe?Pd trimetallic complex 13a , which has been characterised by XRD analysis.  相似文献   

20.
Electrophilic fluorophosphonium triflates bearing pyridyl ( 3 [OTf]) or imidazolyl ( 4 [OTf])-substituents act as intramolecular frustrated Lewis pairs (FLPs) and reversibly form 1 : 1 adducts with CO2 ( 5 + and 6 +). An unusual and labile spirocyclic tetrahedral intermediate ( 7 2+) is observed in CO2-pressurized (0.5–2.0 bar) solutions of cation 4 + at low temperatures, as demonstrated by variable-temperature NMR studies, which were confirmed crystallographically. In addition, cations 3 + and 4 + actively bind carbonyls, nitriles and acetylenes by 1,3-dipolar cycloaddition, as shown by selected examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号