首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La3B6O13(OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and β=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2O6 entities. The compound develops borate layers of „sechser“-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2O6 entities.  相似文献   

2.
The phosphide oxide La2AuP2O was synthesized from lanthanum filings, dried La2O3, gold pieces, and ground red phosphorus in the ideal 1.33:0.33:1:2 ratio in an evacuated silica tube at 1473 K. Small single crystals were obtained by recrystallization in a NaCl/KCl flux. The structure was determined on the basis of single‐crystal X‐ray diffractometer data: new type, C2/m, a = 1537.3(3), b = 427.39(8), c = 1009.2(2) pm, β = 131.02(1) °, wR2 = 0.046, 1102 F2 values, 38 variables. La2AuP2O contains two striking structural motifs: The oxygen atoms are located in La4 tetrahedra. The latter are cis‐edge‐shared forming polymeric cationic [La2O]4+ chains. These cationic units are separated and charge‐balanced by [AuP2]4– polyanions which have monovalent gold in distorted trigonal planar phosphorus coordination. Two crystallographically independent phosphorus sites occur in the polyanion, i.e. isolated P3– besides dumb‐bells P24– (P2–P2 223 pm). La2AuP2O, which crystallizes in the form of ruby red transparent crystals, is an electron precise phosphide oxide (4La3+)(2Au+)(2P3–)(P24–)(2O2–).  相似文献   

3.
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   

4.
The crystal structure of La3ReO8, prepared at 1425°C, is reported to be different from a previous result on a preparation at 900°C (BAUD et al., 1979). The high temperature modification crystallizes in the monoclinic space group P21/m with a = 7.757(1), b = 7.777(1), c = 5.928(1) Å, γ = 111.1°, Z = 2. The structure was solved by Patterson and Fourier methods from single crystal diffractometer data and refined to final R(F) = 0,073. The structure consists of isolated, distorted ReO6 octahedra and double chains of edge-shared La4O tetrahedra.  相似文献   

5.
Single crystals of a new barium oxogallate were obtained by growth from a melt at 1500 °C. The compound is monoclinic, with cell parameters a = 17.7447(10) Å, b = 10.6719(5) Å, c = 7.2828(5) Å, β = 98.962(7)°, V = 1362.3(2) Å3. The diffraction pattern shows systematic absences corresponding to the space group P121/c1. The structure was solved by direct methods followed by Fourier syntheses, and refined using a single crystal diffraction data set (R1 = 0.032 for 2173 reflections with I > 2σ(I)). The chemical composition derived from structure solution is Ba4Ga2O7, with a unit cell content of Z = 6. Main building units of the structure are GaO4 tetrahedra sharing one oxygen atom to form Ga2O7 groups. The Ga–O–Ga bridging angle of one of the two symmetrically independent groups is linear by symmetry. The dimers are crosslinked by barium cations coordinated by six to eight oxygen ligands.  相似文献   

6.
Isotypic imidonitridophosphates MH4P6N12 (M=Mg, Ca) have been synthesized by high‐pressure/high‐temperature reactions at 8 GPa and 1000 °C starting from stoichiometric amounts of the respective alkaline‐earth metal nitrides, P3N5, and amorphous HPN2. Both compounds form colorless transparent platelet crystals. The crystal structures have been solved and refined from single‐crystal X‐ray diffraction data. Rietveld refinement confirmed the accuracy of the structure determination. In order to quantify the amounts of H atoms in the respective compounds, quantitative solid‐state 1H NMR measurements were carried out. EDX spectroscopy confirmed the chemical compositions. FTIR spectra confirmed the presence of NH groups in both structures. The crystal structures reveal an unprecedented layered tetrahedral arrangement, built up from all‐side vertex‐sharing PN4 tetrahedra with condensed dreier and sechser rings. The resulting layers are separated by metal atoms.  相似文献   

7.
The system CuO/In2O3/P2O5 has been investigated using solid state reaction between CuO, In2O3 and (NH4)2HPO4 in silica glass crucibles at 900 °C. The powder samples were characterized by X‐ray diffraction, thermal analysis and FT‐IR spectroscopy. Orange single crystals of the new quaternary phase were achieved by the process of crystallization with mineralizers in sealed silica glass ampoules. They were then analyzed with EDX and single‐crystal X‐ray analysis in which the composition Cu8In8P4O30 with the triclinic space group P$\bar{1}$ (No 2) with a = 7,2429(14) Å, b = 8,8002(18) Å, c = 10,069(2) Å, α = 103,62(3)°, β = 106,31(3)°, γ = 101,55(3)° and Z = 1 was found. The three‐dimensional framework consists of [InO6] octahedra and distorted [CuO6] octahedra, overcaped [InO7] prisms and [PO4] tetrahedra, also trigonal [(CuIn)O5] bipyramids and distorted [(CuIn)O6] octahedra, where copper and indium are partly exchanged against each other. Cu8In8P4O30 exhibits an incongruent melting point at 1023 °C.  相似文献   

8.
The crystal structure of [C10N2H10]2[P2Mo5O21(OH)2] · 2H2O, contains the heteropolyanion, [P2Mo5O21(OH)2]4—, together with diprotonated 4, 4′‐bipyridine. The heteropolyanion is built up from five MoO6 octahedra sharing four common edges and one common corner, capped by two PO3(OH) tetrahedra. The structure is stabilized by hydrogen bonds involving the hydrogen atoms of the 4, 4′‐bipyridine, water molecules and the oxygen atoms of the pentamolybdatobisphosphate. This is the first example that this kind of cluster could be isolated in the presence of a poly‐functional aromatic molecule ion. Crystal data: triclinic, P1¯ (No. 2), a = 9.983(2)Å, b = 11.269(2)Å, c = 17.604(4)Å, α = 73.50(3)°, β = 84.07(3)°, γ = 67.96(3)°; V = 1760.0(6)Å3; Z = 2; R1 = 0.037 and wR2 = 0.081, for 9138 reflections [I > 2σ(I)].  相似文献   

9.
The homeotypic compounds La16.32Ba1.82Sr7.86[Si60N92.32O3.68]O12 and La13.68Sr12.32[Si60N96]F6.32O5.68 were synthesized at high temperature (1600/1500 °C) in a radio‐frequency furnace. The crystal structures [I$\bar{4}$ m (no. 217), Z = 1, a = 13.3360(10)/13.3258(10) Å and V = 2371.8(5)/2366.4(5) Å3] were solved and refined on basis of single‐crystal X‐ray diffraction data and were corroborated by lattice‐energy calculations (Madelung part of lattice energy, MAPLE) powder X‐ray diffraction data and FTIR spectroscopy. They consist of a three‐dimensional network of allside corner sharing SiN4–xOx tetrahedra. The framework is characterized by double dreier rings. La16.32Ba1.82Sr7.86[Si60N92.32O3.68]O12 represents an oxonitridosilicate oxide and La13.68Sr12.32[Si60N96]F6.32O5.68 a nitridosilicate fluoride oxide, as the crystal structures contain non‐condensed (O[0]/O,F[0]) anions. The first compound is isotypic to Sr3Ln10Si18Al12O18N36 (Ln = Ce, Pr, Nd; Z = 2), whereas the latter describes a disordered model of the crystal structure, which is homeotypic to the mentioned SiAlONs.  相似文献   

10.
Suitable proportions of La, La4Pb3 and La2O3 or LaN reacted in pressed pellets at 1050°–1250°C result in high yields of the title compounds. Single crystal X-ray studies of the oxide show it to be an isopointal, interstitial derivative of the Cr5B3 structure (I4/mcm, Z = 4, a = 8.6895(2) Å, c = 14.540(1) Å, R/Rw = 3.0/3.5%). Oxygen or nitrogen atoms are bound in (La2)4 tetrahedra within chains along (0, 1 /2, z). Negligible dimerization of the type characteristic of Cr5B3 is indicated by the Pb2? Pb2 separation, 3.550(1) Å. The structure is compared with other related examples.  相似文献   

11.
The oxonitridophosphate SrP3N5O has been synthesized by heating a multicomponent reactant mixture that consisted of phosphoryl triamide OP(NH2)3, thiophosphoryl triamide SP(NH2)3, SrS, and NH4Cl enclosed in evacuated and sealed silica‐glass ampoules up to 750 °C. The compound was obtained as nanocrystalline powder with needle‐shaped crystallites. The crystal structure was solved ab initio on the basis of electron diffraction data by means of automated electron diffraction tomography (ADT) and verified by Rietveld refinement with X‐ray powder diffraction data. SrP3N5O crystallizes in the orthorhombic space group Pnma (no. 62) with unit‐cell data of a=18.331(2), b=8.086(1), c=13.851(1) Å and Z=16. The compound is a highly condensed layer phosphate with a degree of condensation κ=1/2. The corrugated layers ${{{\hfill 2\atop \hfill \infty }}}The oxonitridophosphate SrP(3)N(5)O has been synthesized by heating a multicomponent reactant mixture that consisted of phosphoryl triamide OP(NH(2))(3), thiophosphoryl triamide SP(NH(2))(3), SrS, and NH(4)Cl enclosed in evacuated and sealed silica-glass ampoules up to 750 °C. The compound was obtained as nanocrystalline powder with needle-shaped crystallites. The crystal structure was solved ab initio on the basis of electron diffraction data by means of automated electron diffraction tomography (ADT) and verified by Rietveld refinement with X-ray powder diffraction data. SrP(3)N(5)O crystallizes in the orthorhombic space group Pnma (no. 62) with unit-cell data of a=18.331(2), b=8.086(1), c=13.851(1) ? and Z=16. The compound is a highly condensed layer phosphate with a degree of condensation κ=?. The corrugated layers (∞)(2){(P(3)N(5)O)(2-)} consist of linked, triangular columns built up from P(O,N)(4) tetrahedra with 3-rings and triply binding nitrogen atoms. The Sr(2+) ions are located between the layers and exhibit six-, eight-, and ninefold coordination. FTIR and solid-state NMR spectra of SrP(3)N(5)O are discussed as well.  相似文献   

12.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

13.
Molecules of the title compounds N2‐(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2‐(2‐hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2‐benzoyloxy‐2‐hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N—H⋯N hydrogen bond [H⋯N = 2.15 Å, N⋯N = 3.029 (2) Å and N—H⋯N = 153°] and these chains are linked into sheets by means of aromatic π–π stacking interactions. There is one intramolecular O—H⋯O hydrogen bond in (II), and a combination of one three‐centre N—H⋯(N,O) hydrogen bond [H⋯N = 2.46 Å, H⋯O = 2.31 Å, N⋯N = 3.190 (2) Å, N⋯O = 3.146 (2) Å, N—H⋯N = 138° and N—H⋯O = 154°] and one two‐centre C—H⋯O hydrogen bond [H⋯O = 2.46 Å, C⋯O = 3.405 (2) Å and C—H⋯O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O—H⋯N hydrogen bond and two N—H⋯O hydrogen bonds [H⋯O = 2.26 and 2.10 Å, N⋯O = 2.975 (2) and 2.954 (2) Å, and N—H⋯O = 138 and 163°] link the molecules into sheets.  相似文献   

14.
Molecules of the title compound, C13H8I2N2O3, are linked into C(4) chains by a single N—H⋯O=C hydrogen bond [H⋯O = 2.10 Å, N⋯O = 2.832 (5) Å and N—H⋯O = 140°]. Two independent two‐centre iodo–nitro interactions, both involving the same O atom but different I atoms [I⋯O = 3.205 (3) and 3.400 (3) Å, and C—I⋯O = 160.4 (2) and 155.7 (2)°], link the hydrogen‐bonded chains into bilayers.  相似文献   

15.
La2O(CN2)2 was synthesized from a 1:1:2 molar reaction mixture of LaCl3, LaOCl, and Li2(CN2) at 650 °C. Well developed single crystals were grown from a LiCl‐KCl flux. The crystal structure was refined as monoclinic (space group C2/c, Z = 2, a = 13.530(2) Å, b = 6.250(1) Å, c = 6.1017(9) Å, β = 104.81(2)°) from single crystal X‐ray diffraction data. The La3+ and (CN2)2— ions in the crystal structure of La2O(CN2)2 can be compared to Fe3+ and S22— ions in the cubic pyrite structure, being arranged like in a distorted NaCl type structure with their centers of gravity. In addition, the O2— ions in La2O(CN2)2 are occupying 1/4 of the tetrahedral voids formed by the arrangement of metal ions.  相似文献   

16.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

17.
18.
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

19.
RbFe[BP2O8(OH)]: A New Borophosphate Containing Open-Branched Tetrahedral Vierer-Einfach Chains RbFe[BP2O8(OH)] is formed under mild hydrothermal conditions (T = 165–170 °C) from a mixture of RbOH(aq), FeCl2 · 4 H2O, H3BO3 and H3PO4. The crystal structure of the monoclinic compound was solved by x-ray single crystal methods (space group P21/c, No. 14): a = 935.8(5) pm, b = 833.9(6) pm, c = 965.6(5) pm; β = 101.69(4)°; Z = 4. The anionic partial structure contains open-branched vierer-einfach chains [BP2O8(OH)]4–, which are formed by alternating borate and phosphate tetrahedra sharing common corners. Fe3+ is in an octahedral coordination (FeO5(OH)), while Rb+ is irregularly coordinated by ten oxygen-functions of neighbouring tetrahedra.  相似文献   

20.
A polynuclear complex containing a monomer of Cu(II)-Zn(II) heterobinuclear unit was synthesized and characterized by IR spectra and magnetic moment. The crystal and molecular structure of the complex, CuZnC19H24Cl4N2O2, was determined by X-ray diffraction, it crystallized in monoclinic, P21/m, α = 8.812 (2), b = 15.972(3), c = 8.831(1) Å, β = 114.33(1)°, V = 1132.4Å3, Z = 2, De = 1.710 g/ cm3,γ(MoKα) =0.71073 å, μ = 25.227 cm?1, R = 0.051. Rw = 0.063 for 1130 observed reflections with I>3α(1). The coordinated octahedra of Cu(II) and tetrahedra of Zn(II) via bridging CI atoms form a single chain polynuclear complex. The Cu, Zn and bridging Cl atoms are located on the crystallographic symmetry plane m which is perpendicular to 2N and 2O donor plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号