首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Reported is the stereospecific cross‐coupling of anomeric stannanes with symmetrical diselenides, resulting in the synthesis of selenoglycosides with exclusive anomeric control. The reaction proceeds without the need for directing groups and is compatible with free hydroxy groups as demonstrated in the preparation of glycoconjugates derived from mono‐, di‐, and trisaccharides and peptides (35 examples). Given its generality and broad substrate scope, the glycosyl cross‐coupling method presented herein can find use in the synthesis of selenium‐containing glycomimetics and glycoconjugates.  相似文献   

2.
Chemical synthesis of oligosaccharide conjugates is essential for studying the functional relevance of carbohydrates, and this task would be facilitated considerably if reliable methods for the anomeric ligation of unprotected sugars in water were available. Here, a method for the preparation of anomeric glycosyl thiols from complex unprotected mono‐, di‐, and oligosaccharides is presented. By exploiting the neighboring‐group effect of the 2‐acetamido‐group, 1,2‐oxazolines are generated and converted into 1‐glycosyl thioesters through treatment with 1‐thioacids. The unprotected anomeric glycosyl thiolates released in situ were conjugated to Michael acceptors, aliphatic halogenides, and aziridines to furnish versatile glycoconjugates. Conjugation of amino acids and proteins was accomplished using the thiol–ene reaction with terminal olefins. This method gives efficient access to anomeric glycosyl thiols and thiolates, which enables anomeric ligations of complex unprotected glycans in water.  相似文献   

3.
The research on the area of glycosyl urea derivatives, in which the O- and N-glycosidic bonds are replaced with the urea-glycosidic linkages, has recently emerged with applications in the field of aminoglycoside antibiotics. We have developed a novel method for the stereoselective synthesis of alpha- and beta-glycosyl ureas via Pd(II)-catalyzed rearrangement of glycal trichloroacetimidates. In our approach, the alpha- and beta-selectivity at the anomeric carbon of N-glycosyl trichloroacetamides depends on the nature of the palladium-ligand catalyst. While the cationic Pd(II)-L-4 (2-trifluoroacetylphenol) complex promotes alpha-selectivity, the neutral Pd(II)-TTMPP-L-5 (4-chloro-2-trifluoroacetylphenol) complex favors beta-selectivity. The resulting alpha- and beta-N-glycosyl trichloroacetamides were further coupled with a diverse array of primary and hindered secondary nitrogen nucleophiles to provide the corresponding glycosyl ureas in moderate to good yields and with no loss of stereochemical integrity at the anomeric carbon. We have further demonstrated the utility of N-glycosyl trichloroacetamides as robust and versatile intermediates in the synthesis of unsymmetrical urea-linked disaccharides and trisaccharide.  相似文献   

4.
[structure: see text] This is the first report on the diastereoselective addition of carbon nucleophiles to vinyl sulfone-modified hex-2-enopyranosides and pent-2-enofuranosides. Nucleophiles add to the C-2 position from a direction opposite to that of the disposition of the anomeric methoxy group. This novel concept of anomeric configuration-directed stereocontrolled carbon-carbon bond formation in vinyl sulfone-modified carbohydrates is general in nature and has been implemented in the synthesis of new hexopyranosyl and pentofuranosyl branched-chain sugars and densely functionalized carbohydrates.  相似文献   

5.
The solution structure of glycosyl amides has been studied by using NMR. A strong preference is displayed by tertiary aromatic glycosyl amides for E-anti structures in contrast with secondary aromatic glycosyl amides where Z-anti structures predominate. The structural diversity displayed by these classes of molecules would seem to be important as the directional properties of the aromatic ring, or groups attached to the aromatic ring, would be determined by choosing to have either a secondary or tertiary amide at the anomeric center and could be considered when designing bioactive molecules with carbohydrate scaffolds. The structural analysis was also carried out for related divalent secondary and tertiary glycosyl amides and these compounds display preferences similar to that of the monovalent compounds. The constrained divalent compounds have potential for promoting formation of clusters that will have restricted structure and thus have potential for novel studies of mechanisms of action of multivalent ligands. Possible applications of such compounds would be as scaffolds for the design and synthesis of ligands that will facilitate protein-protein or other receptor-receptor interactions. The affinity of restricted divalent (or higher order) ligands, designed to bind to proteins that recognize carbohydrates which would facilitate clustering and concomitantly promote protein-protein interactions, may be significantly higher than monovalent counterparts or multivalent ligands without these properties. This may be useful as a new approach in the development of therapeutics based on carbohydrates.  相似文献   

6.
C-Acyl furanosides are versatile synthetic precursors to a variety of natural products, nucleoside analogues, and pharmaceutical molecules. This report addresses the unmet challenge in preparing C-acyl furanosides by developing a cross-coupling reaction between glycosyl esters and carboxylic acids. A key step is the photoredox activation of the glycosyl ester, which promotes the homolysis of the strong anomeric C–O bond through CO2 evolution to afford glycosyl radicals. This method embraces a large scope of furanoses, pyranoses, and carboxylic acids, and is readily applicable to the synthesis of a thymidine analogue and diplobifuranylone B, as well as the late-stage modification of (+)-sclareolide. The convenient preparation of the redox active glycosyl ester from native sugars and the compatibility with common furanoses exemplifies the potential of this method in medicinal chemistry.

A cross-coupling of glycosyl esters with carboxylic acids to prepare C-acyl furanosides and pyranosides. The reaction proceeds through photoredox activation of the glycosyl ester to afford glycosyl radicals.  相似文献   

7.
Stereoselective C-glycosylation reactions are increasingly gaining attention in carbohydrate chemistry because they enable glycosyl precursors, readily accessible as anomeric mixtures, to converge to a single diastereomeric product. However, controlling the stereochemical outcome through transition-metal catalysis remains challenging, and methods that leverage bench-stable heteroaryl glycosyl sulfone donors to facilitate glycosylation are rare. Herein, we show two complementary nonprecious metal catalytic systems, based on iron or nickel, which are capable of promoting efficient C−C coupling between heteroaryl glycosyl sulfones and aromatic nucleophiles or electrophiles through distinct mechanisms and modes of activation. Diverse C-aryl glycosides were secured with excellent selectivity, scope, and functional-group compatibility, and reliable access to both α and β isomers was possible for key sugar residues.  相似文献   

8.
过渡金属催化(类)卤化物和不同金属试剂的交叉偶联反应是构建不同类型碳碳键和碳杂原子键的重要方法之一。该类反应一般使用活性较高的氯、溴、碘或类卤化物作为亲电试剂,尽管C—F键的键能较强,利用过渡金属直接活化较为惰性的芳基C—F键并参与实现的交叉偶联反应已有较多报道。此外,近期的研究表明,也可以通过直接活化烯基C—F键并催化实现该类底物参与不同类型的交叉偶联反应,从而进一步拓展了交叉偶联反应的底物适用范围,并应用于具有高附加值精细化学品的选择性合成。本文围绕钯或镍催化活化单氟或者多氟烯烃等底物参与的Negishi、Suzuki-Miyaura、Kumada、Hiyama和Sonogashira等5类交叉偶联反应,通过探讨已有方法的反应机理及其适用范围,综述了该领域的研究进展并进行了展望。  相似文献   

9.
In chemical glycosylation reactions, a glycosyl donor couples with a glycosyl acceptor through glycosidic linkage. Most of the products end up with a mixture due to the formation of a stereogenic center at the anomeric carbon. Activation with a suitable Lewis acid and introduction of the non‐participating protecting group on donor and acceptor results in a selective product. Herein, we used a suitably protected donor and acceptor which produced an orthogonally protected building block with α‐selectivity. We used also a donor for the synthesis of modified phosphoribosylated amino acid. The formation of glycoside products can be used to synthesize complex biologically important organic molecules.  相似文献   

10.
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors.  相似文献   

11.
Porous carbon materials have attracted much attention in the field of organic synthesis in recent years,due to their tunable properties, excellent catalytic activity and stability. Biomass-based carbohydrates emerge as an ideal precursor for the generation of these materials owing to their renewability, low cost,non-toxicity and high content of functional groups. Thus, carbon materials prepared from carbohydrates is of considerable importance for the sustainable development of organic chemistry....  相似文献   

12.
The incorporation of C‐glycosides in drug design has become a routine practice for medicinal chemists. These naturally occurring building blocks exhibit attractive pharmaceutical profiles, and have become an important target of synthetic efforts in recent decades. 1 Described herein is a practical, scalable, and versatile route for the synthesis of non‐anomeric and unexploited C‐acyl glycosides through a Ni/photoredox dual catalytic system. By utilizing an organic photocatalyst, a range of glycosyl‐based radicals are generated and efficiently coupled with highly functionalized carboxylic acids at room temperature. Distinctive features of this transformation include its mild conditions, impressive compatibility with a wide array of functional groups, and most significantly, preservation of the anomeric carbon: a handle for further, late‐stage derivatization.  相似文献   

13.
C‐Glycosides are carbohydrates that bear a C?C bond to an aglycon at the anomeric center. Due to their high stability towards chemical and enzymatic hydrolysis, these compounds are widely used as carbohydrate mimics in drug development. Herein, we report a general and exclusively β‐selective method for the synthesis of a naturally abundant acyl‐C‐glycosidic structural motif first found in the scleropentaside natural product family. A Corey–Seebach umpolung reaction as the key step in the synthesis of scleropentaside A and analogues enables the β‐selective construction of the anomeric C?C bond starting from unprotected carbohydrates in only four steps. The one‐pot approach is highly atom‐efficient and avoids the use of toxic heavy metals.  相似文献   

14.
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)?B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.  相似文献   

15.
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)−B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.  相似文献   

16.
We describe a facile synthetic method of carbamate- and urea-linked glycoconjugates using sugar carboxylic acids by the modified Curtius rearrangement. This reaction is a simple one-pot procedure, and various nucleophiles including tertiary alcohols can be utilized to afford desired compounds in moderate to high yields. And the stereospecific synthesis of the anomeric isomers is achieved using the corresponding two stereoisomers of glycosyl carboxylic acid.  相似文献   

17.
This review describes recent development in the use of sugar-derived ligands in the selective synthesis of organic molecules. Developments in the recent literature (2004–2009) are highlighted in the areas of hydrogenation, 1,2- and 1,4-additions of nucleophiles to CO and CNR based substrates, cross-coupling, hydroformylation, oxidation and other reactions. Connections to earlier studies are also noted were relevant. Some suggestions as to the underlying features that make sugar-based ligands highly useful modular ligands in selective catalysis are given. Finally, advice is presented (for the non-specialist) on optimal entry points and basic starting materials for sugar-ligand synthesis.  相似文献   

18.
The synthesis of the title compounds (1) was achieved in two steps starting from readily available 2,4-dibromothiazole (2). In a regioselective Pd(0)-catalyzed cross-coupling step, compound 2 was converted into a variety of 2-substituted 4-bromothiazoles 3 (10 examples, 65-85% yield). Alkyl and aryl zinc halides were employed as nucleophiles to introduce an alkyl or aryl substituent. The Sonogashira protocol was followed to achieve an alkynyl-debromination. Bromo-lithium exchange at carbon atom C-4 and subsequent transmetalation to zinc or tin converted the 4-bromothiazoles 3 into carbon nucleophiles which underwent a second regioselective cross-coupling with another equivalent of 2,4-dibromothiazole (2). The Negishi cross-coupling gave high yields of the 2'-alkyl-4-bromo-2,4'-bithiazoles 1a-g (88-97%). The synthesis of the 2'-phenyl- and 2'-alkynyl-4-bromo-2,4'-bithiazoles 1h-j required a Stille cross-coupling that did not proceed as smoothly as the Negishi cross-coupling (58-62% yield). The title compounds which were accessible in total yields of 38-82% are versatile building blocks for the synthesis of 2,4'-bithiazoles.  相似文献   

19.
Construction of functionalized nucleic acids (DNA or RNA) via polymerase incorporation of modified nucleoside triphosphates is reviewed and selected applications of the modified nucleic acids are highlighted. The classical multistep approach for the synthesis of modified NTPs by triphosphorylation of modified nucleosides is compared to the novel approach consisting of direct aqueous cross-coupling reactions of unprotected halogenated nucleoside triphosphates. The combination of cross-coupling of NTPs with polymerase incorporation gives an efficient and straightforward two-step synthesis of modified nucleic acids. Primer extension using biotinylated templates followed by separation using streptavidine-coated magnetic beads and DNA duplex denaturation is used for preparation of modified single stranded oligonucleotides. Examples of using this approach for electrochemical DNA labelling and bioanalytical applications are given.  相似文献   

20.
Sortases are a family of transpeptidases found in gram-positive bacteria responsible for covalent anchoring of cell surface proteins to bacterial cell walls. It has been discovered that sortase A (SrtA) of Staphylococcus aureus origin is rather promiscuous and can accept various molecules as substrates. As a result, SrtA has been widely used to ligate peptides and proteins with a variety of nucleophiles, and the ligation products are useful for research in chemical biology, proteomics, biomedicine, etc. This review summarizes the recent applications of SrtA with special emphasis on SrtA-catalyzed ligation of carbohydrates with peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号