首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragment‐based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit‐identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X‐ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis‐acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm , which represents a 240‐fold improvement in potency compared to the parent hits. Subsequent X‐ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit‐identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit‐to‐lead optimization.  相似文献   

2.
Structure‐based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein‐bound library member(s) by saturation‐transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.  相似文献   

3.
陈玉岩  刘刚 《化学进展》2007,19(12):1903-1908
动态组合化学是组合化学的一个新兴分支,在药物先导化合物的发现中有广阔的应用前景。在动态组合化学库中,利用靶标分子的诱导结合作用,通过可逆共价反应,能够选择性的筛选到与靶标分子存在强相互作用的优势化合物。本文按照动态组合化学方法简介、动态组合化学中的可逆共价化学、动态组合化学库的分类、动态组合化学库筛选方法的研究进展及动态组合化学在药物先导化合物发现过程中的应用等5个方面对动态组合化学进行了概述。  相似文献   

4.
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self‐assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic “thermal tag” with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily‐selective probes against two clinically important epigenetic enzymes: FTO ( 7 ; IC50=2.6 μm ) and ALKBH3 ( 8 ; IC50=3.7 μm ). To date, this is the first report of a subfamily‐selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.  相似文献   

5.
A well known strategy to prepare high affinity ligands for a biological receptor is to link together low affinity ligands. DCC (dynamic combinatorial chemistry) was used to select bifunctional protein ligands with high affinity relative to the corresponding monofunctional ligands. Thiol to disulfide linkage generated a small dynamic library of bifunctional ligands in the presence of calmodulin, a protein with two independently mobile domains. The binding constant of the bifunctional ligand (disulfide) most amplified by the presence of calmodulin is nearly two orders of magnitude higher than that of the corresponding monofunctional ligand (thiol).  相似文献   

6.
Molecular diversity can easily be generated in metallo-supramolecular systems by simple mixing of oligodentate ligands and appropriate metal ions. In this reaction either a defined coordination compound is formed in a selective self-assembly process or a mixture is obtained. Depending on the system such a mixture can possess a statistical distribution of components or the formation of some species is thermodynamically favored leading to only a few out of several possible compounds (or in the extreme to only one). Simple well-defined mixtures containing only a few components or pure supramolecular aggregates can be generated from sequential or directional ligands, from mixtures of ligands and/or metals, and by introducing templates which support the formation of defined metallo-supramolecular aggregates. In the latter case it is possible first to generate a mixture of components which are in dynamic equilibrium (dynamic combinatorial library). In a second step, a template can be added, which in a dynamic process transforms such a library into one well-defined species. Thus, the initial generation of molecular diversity allows in a subsequent selection step in an evolutionary process the formation of the most favored receptor/substrate adduct (``dynamic combinatorial chemistry').  相似文献   

7.
动态组合化学研究进展及其在药物设计中的应用   总被引:3,自引:0,他引:3  
动态组合化学利用可逆过程连接库内的各种组分,实现动态库的多样性.在库中加入靶标分子,通过分子识别、分子组装,诱导产生和靶标分子产生最强键合的化合物,推动化合物库的移动.介绍了动态组合化学的基本原理,并综述了近年来发现的动态可逆过程和动态组合化学在生物学、新药设计中的应用.  相似文献   

8.
In the past 15 years, the chemistry of reversible covalent bond formation (dynamic covalent chemistry (DCC)) has been exploited to engineer networks of interconverting compounds known as dynamic combinatorial libraries (DCLs). Classically, the distribution of library components is governed by their relative free energies, and so, processes that manipulate the free energy landscape of the DCL can influence the distribution of library members. Within the same time frame, the design and implementation of molecules capable of copying themselves--so-called replicators--has emerged from the field of template-directed synthesis. Harnessing the nonlinear kinetics inherent in replicator behavior offers an attractive strategy for amplification of a target structure within a DCL and, hence, engendering high levels of selectivity within that library. The instructional nature of replicating templates also renders the combination of replication and DCC a potential vehicle for developing complex reaction networks; a prerequisite for the development of the emerging field of systems chemistry. This Concept article explores the role of kinetically and thermodynamically controlled processes within different DCC frameworks. The effects of embedding a replicating system within these DCC frameworks is explored and the consequences of the different topologies of the reaction network for amplification and selectivity within DCLs is highlighted.  相似文献   

9.
Dynamic combinatorial chemistry (DCC) has emerged as an efficient approach to receptor/ligand identification based on the generation of combinatorial libraries by reversible interconversion of the library constituents. In this study, the implementation of such libraries on carbohydrate-lectin interactions was examined with the plant lectin Concanavalin A as a target species. Dynamic carbohydrate libraries were generated from a pool of carbohydrate aldehydes and hydrazide linker/scaffold components through reversible acylhydrazone exchange, resulting in libraries containing up to 474 constituents. Dynamic deconvolution allowed the efficient identification of the structural features required for binding to Concanavalin A and the selection of a strong binder, a tritopic mannoside, showing an IC(50)-value of 22 microM.  相似文献   

10.
Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure–activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.

Target-directed dynamic combinatorial chemistry was used for hit-identification and subsequent hit-optimization for the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase resulting in novel inhibitors with low micromolar affinities.  相似文献   

11.
We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.  相似文献   

12.
Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA‐encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal‐to‐noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA‐encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high‐affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA‐templated chemical reactions.  相似文献   

13.
SELEX (for Systematic Evolution of Ligands by Exponential enrichment) has proven to be extraordinarily powerful for the isolation of DNA or RNA aptamers that bind with high affinity and specificity to a wide range of molecular targets. However, the modest chemical functionality of nucleic acids poses some limits on the versatility of aptamers as binders and catalysts. To further improve the properties of aptamers, additional chemical diversity must be introduced. The design of chemical modifications is not a trivial task. Recently, dynamic combinatorial chemistry (DCC) has been introduced as an alternative to traditional combinatorial chemistry. DCC employs equilibrium shifting to effect molecular evolution of a dynamic combinatorial library of molecules. Herein, we describe an original process that combines DCC and SELEX for the in vitro selection of modified aptamers which are conjugated to chemically diverse small-molecules. Its successful application for the selection of small-molecule conjugated RNA aptamers that bind tightly to the transactivation-response (TAR) element of HIV-1 is presented.  相似文献   

14.
Dynamic combinatorial libraries are powerful systems for studying adaptive behaviors and relationships, as models of more complex molecular networks. With this aim, we set up a chemically diverse dynamic library of pseudopeptidic macrocycles containing amino‐acid side chains with differently charged residues (negative, positive, and neutral). The responsive ability of this complex library upon the increase of the ionic strength has been thoroughly studied. The families of the macrocyclic members concentrating charges of the same sign showed a large increase in its proportion as the ionic strength increases, whereas those with residues of opposite charges showed the reverse behavior. This observation suggested an electrostatic shielding effect of the salt within the library of macrocycles. The top‐down deconvolution of the library allowed us to obtain the fundamental thermodynamic information connecting the library members (exchange equilibrium constants), as well as to parameterize the adaptation to the external stimulus. We also visualized the physicochemical driving forces for the process by structural analysis using NMR spectroscopy and molecular modeling. This knowledge permitted the full understanding of the whole dynamic library and also the de novo design of dynamic chemical systems with tailored co‐adaptive relationships, containing competing or cooperating species. This study highlights the utility of dynamic combinatorial libraries in the emerging field of systems chemistry.  相似文献   

15.
We report a system in which three distinct dynamic linkages, disulfide (S-S), imine (C=N), and coordinative (N-->metal) bonds were shown to be capable of simultaneous reversible exchange. The "disulfide layer" of the system under study consists of two homo-disulfides, bis(4-aminophenyl) disulfide 1 and bis(4-methoxyphenyl) disulfide 2 that equilibrate in the presence of catalytic amount of triethylamine to favor the formation of a hetero-disulfide product, 4-aminophenyl-4'-methoxyphenyl disulfide 3. The addition of 2-formylpyridine and a metal salt strongly perturbed this 1+2<-->3 equilibrium through the formation of metal complexes incorporating disulfide 1 as a subcomponent. CuI perturbed the equilibrium by a factor of 3.3, and FeII by a factor of 179, in both cases in favor of the homo-disulfides. The disulfide equilibrium could be further modified, following metal-complex formation, by coordinative (transmetallation: substitution of FeII for CuI) or covalent (imine exchange: the substitution of one amine residue for another) exchange. Thus, although the three kinds of dynamic linkages were demonstrated to be mutually compatible, changes at one kind of linkage could be used to predictably perturb an equilibrium involving another.  相似文献   

16.
The reaction between 8-aminoquinoline, 1,10-phenantholine-2,9-dicarbaldehyde, and copper(I) tetrafluoroborate gave a quantitative yield of a tricopper double helicate. The presence of dynamic covalent imine (C=N) bonds allowed this assembly to participate in two reactions not previously known in helicate chemistry: 1) It could be prepared through subcomponent substitution from a dicopper double helicate that contained aniline residues. An electron-poor aniline was quantitatively displaced; a more electron-rich aniline competed effectively with the aminoquinoline, setting up an equilibrium between dicopper and tricopper helicates that could be displaced towards the tricopper through the addition of further copper(I). 2) Both dicopper and tricopper helicates could be prepared simultaneously from a mixture of phenanthroline dialdehyde, aniline, and aminoquinoline, which contained all possible imine condensation products in equilibrium. Following the addition of copper(I), thermodynamic equilibration on both covalent and coordinative levels eliminated all partially-formed and mixed imine ligands from the mixture, leaving the helicates as exclusive products.  相似文献   

17.
We describe a general synthetic strategy for developing high‐affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full‐length protein to identify the best binder. We describe development of epitope‐targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.  相似文献   

18.
Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences.  相似文献   

19.
Despite heparin being the most widely used macromolecular drug, the design of small‐molecule ligands to modulate its effects has been hampered by the structural properties of this polyanionic polysaccharide. Now a dynamic covalent selection approach is used to identify a new ligand for heparin, assembled from extremely simple building blocks. The amplified molecule strongly binds to heparin (KD in the low μm range, ITC) by a combination of electrostatic, hydrogen bonding, and CH–π interactions as shown by NMR and molecular modeling. Moreover, this ligand reverts the inhibitory effect of heparin within an enzymatic cascade reaction related to blood coagulation. This study demonstrates the power of dynamic covalent chemistry for the discovery of new modulators of biologically relevant glycosaminoglycans.  相似文献   

20.
Dynamic combinatorial chemistry is a method widely used for generating responsive libraries of compounds, with applications ranging from chemical biology to materials science. It relies on dynamic covalent bonds that are able to form in a reversible manner in mild conditions, and therefore requires the discovery of new types of these bonds in order to progress. Amides, due to their high stability, have been scarcely used in this field and typically require an external catalyst or harsh conditions for exchange. Compounds able to undergo uncatalysed transamidation at room temperature are still rare exceptions. In this work, we describe reversible amide formation and transamidation in a class of compounds known as maleamic acids. Due to the presence of a carboxylic acid in β-position, these compounds are in equilibrium with their anhydride and amine precursors in organic solvents at room temperature. First, we show that this equilibrium is responsive to external stimuli: by alternating the additions of a Brønsted acid and a base, we can switch between amide and anhydride several times without side-reactions. Next, we prove that this equilibrium provides a pathway for reversible transamidation without any added catalyst, leading to thermodynamic distributions of amides at room temperature. Lastly, we use different preparation conditions and concentrations of Brønsted acid to access different library distributions, easily controlling the transition between kinetic and thermodynamic regimes. Our results show that maleamic acids can undergo transamidation in mild conditions in a reversible and tunable way, establishing them as a new addition to the toolbox of dynamic combinatorial chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号