首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(16):1985-1996
The reduction of CO2 into useful products, including hydrocarbon fuels, is an ongoing area of particular interest due to efforts to mitigate buildup of this greenhouse gas. While the industrial Fischer–Tropsch process can facilitate the hydrogenation of CO2 with H2 to form short‐chain hydrocarbon products under high temperatures and pressures, a desire to perform these reactions under ambient conditions has inspired the use of biological approaches. Particularly, enzymes offer insight into how to activate and reduce CO2, but only one enzyme, nitrogenase, can perform the multielectron, multiproton reduction of CO2 into hydrocarbons. The vanadium‐containing variant, V‐nitrogenase, displays especial reactivity towards the hydrogenation of CO and CO2. This Focus Review discusses recent progress towards the activation and reduction of CO2 with three primary V‐nitrogenase systems. These systems span both ATP‐dependent and ATP‐independent processes and utilize approaches with whole cells, isolated proteins, and extracted cofactors.  相似文献   

2.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

3.
Discovery of the mechanisms for selective transformations of CO2 into organic compounds is a challenge. Herein, we describe the reaction of low‐coordinate Fe silylamide complexes with CO2 to give trimethylsilyl isocyanate and the corresponding Fe siloxide complex. Kinetic studies show that this is a two‐stage reaction, and the presence of a single equivalent of THF influences the rates of both steps. Isolation of a thermally unstable intermediate provides mechanistic insight that explains both the effect of THF in this reaction, and the way in which the reaction achieves high selectivity for isocyanate formation.  相似文献   

4.
The molybdenum and vanadium nitrogenases are two homologous enzymes with distinct structural and catalytic features. Previously, it was demonstrated that the V nitrogenase was nearly 700 times more active than its Mo counterpart in reducing CO to hydrocarbons. Herein, a similar discrepancy between the two nitrogenases in the reduction of CO2 is reported, with the V nitrogenase being capable of reducing CO2 to CO, CD4, C2D4, and C2D6, and its Mo counterpart only capable of reducing CO2 to CO. Furthermore, it is shown that the V nitrogenase may direct the formation of CD4 in part via CO2‐derived CO, but that it does not catalyze the formation of C2D4 and C2D6 along this route. The exciting observation of a V nitrogenase‐catalyzed C? C coupling with CO2 as the origin of the building blocks adds another interesting reaction to the catalytic repertoire of this unique enzyme system. The differential activities of the V and Mo nitrogenases in CO2 reduction provide an important framework for systematic investigations of this reaction in the future.  相似文献   

5.
The production of cyclic carbonates from CO2 cycloaddition to epoxides, using the C-scorpionate iron(II) complex [FeCl23-HC(pz)3}] (pz = 1H-pyrazol-1-yl) as a catalyst, is achieved in excellent yields (up to 98%) in a tailor-made ionic liquid (IL) medium under mild conditions (80 °C; 1–8 bar). A favorable synergistic catalytic effect was found in the [FeCl23-HC(pz)3}]/IL system. Notably, in addition to exhibiting remarkable activity, the catalyst is stable during ten consecutive cycles, the first decrease (11%) on the cyclic carbonate yield being observed during the 11th cycle. The use of C-scorpionate complexes in ionic liquids to afford cyclic carbonates is presented herein for the first time.  相似文献   

6.
The manipulation of the second coordination sphere for improving the electrocatalytic CO2 reduction has led to breakthroughs with hydrogen bonding, local proton source, or electrostatic effects. We have developed two atropisomers of an iron porphyrin complex with two urea functions acting as multiple hydrogen-bonding tweezers to lock the metal-bound CO2 in a similar fashion found in the carbon monoxide dehydrogenase (CODH) enzyme. The αα topological isomer with the two urea groups on the same side of the porphyrin provides a stronger binding affinity to tether the incoming CO2 in comparison to the αβ disposition. However, the electrocatalytic activity of the αβ atropisomer outperforms its congener with one of the highest reported turnover frequencies at low overpotential. The strong H/D kinetic isotope effect (KIE) observed for the αα system indicates the existence of a tight water hydrogen-bonding network for proton delivery which is disrupted by addition of an acid source. The small H/D KIE for the αβ isomer and the enhanced electrocatalytic performance on addition of stronger acid indicate the free access of protons to the bound CO2 on the opposite side of the urea arm.  相似文献   

7.
8.
CO2吸附活化的研究进展   总被引:14,自引:0,他引:14  
王建伟  钟顺和 《化学进展》1998,10(4):374-380
本文分析讨论了CO2 在金属催化剂和金属氧化物催化剂上吸附活化的机理及活化吸附态的反应性能, 提出了CO2 作为一种温和氧化剂在化工生产中加以综合利用的有效途径。  相似文献   

9.
Molecular catalysts have been shown to have high selectivity for CO2 electrochemical reduction to CO, but with current densities significantly below those obtained with solid-state materials. By depositing a simple Fe porphyrin mixed with carbon black onto a carbon paper support, it was possible to obtain a catalytic material that could be used in a flow cell for fast and selective conversion of CO2 to CO. At neutral pH (7.3) a current density as high as 83.7 mA cm−2 was obtained with a CO selectivity close to 98 %. In basic solution (pH 14), a current density of 27 mA cm−2 was maintained for 24 h with 99.7 % selectivity for CO at only 50 mV overpotential, leading to a record energy efficiency of 71 %. In addition, a current density for CO production as high as 152 mA cm−2 (>98 % selectivity) was obtained at a low overpotential of 470 mV, outperforming state-of-the-art noble metal based catalysts.  相似文献   

10.
采用浸渍法和溶胶-凝胶法制备了三种含Mg,Fe和Al量相同的Fe2O3-MgO/γ-Al2O3,Fe2O3/MgAl2O4和MgFe0.1Al1.9O4催化剂,在580°C考察了它们催化乙苯与CO2氧化脱氢反应性能,并采用X射线衍射,表面元素分析,H2-程序升温还原和CO2-程序升温脱附等技术对催化剂体相及表面性质进行了表征.结果表明,催化剂制备方法影响Fe物种的存在形态,进而影响催化剂的稳定性和活性.采用浸渍法制备的Fe2O3/MgAl2O4催化剂含有高度分散的Fe2O3活性物种,该物种具有较好的初活性,但是稳定性较差;而采用溶胶-凝胶法制备的MgFe0.1Al1.9O4催化剂中,Fe物种主要以同晶取代的形式存在于尖晶石骨架中,因而具有较高的乙苯与CO2氧化脱氢催化活性和稳定性.  相似文献   

11.
The hydride-bridged silylium cation [Et3Si−H−SiEt3]+, stabilized by the weakly coordinating [Me3NB12Cl11] anion, undergoes, in the presence of excess silane, a series of unexpected consecutive reactions with the valence-isoelectronic molecules CS2 and CO2. The final products of the reaction with CS2 are methane and the previously unknown [(Et3Si)3S]+ cation. To gain insight into the entire reaction cascade, numerous experiments with varying conditions were performed, intermediate products were intercepted, and their structures were determined by X-ray crystallography. Besides the [(Et3Si)3S]+ cation as the final product, crystal structures of [(Et3Si)2SMe]+, [Et3SiS(H)Me]+, and [Et3SiOC(H)OSiEt3]+ were obtained. Experimental results combined with supporting quantum-chemical calculations in the gas phase and solution allow a detailed understanding of the reaction cascade.  相似文献   

12.
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro-/photo-)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ-MePyr)2Fe(NO)2]2− ( 2 , MePyr=3-methylpyrazolate) results in the formation of CO2-captured complex [(NO)2Fe(MePyrCO2)] ( 2-CO2 , MePyrCO2=3-methyl-pyrazole-1-carboxylate). Single-crystal structure, spectroscopic, reactivity, and computational study unravels 2-CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2-CO2 → [(NO)2Fe(μ-MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2-CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   

13.
14.
Lu Wang  Wei Sun  Chao Liu 《中国化学》2018,36(4):353-362
Carbon dioxide is a sufficient and important carbon resource, which has been widely used as a C1 building block in synthetic chemistry. Carbonylations with CO are important processes in industry. However, due to the toxicity of CO, its storage and transport are problematic. Attentions are gradually focused on using other safe reagents to be the CO surrogates in carbonylation reactions. This review focuses on the summary of recent developments in using CO2 as a CO surrogate in homogeneous catalysis. Reductive processes by using H2, Si‐H, alcohols, etc and redox‐neutral processes are separately summarized.  相似文献   

15.
This work shows that a hollow and microporous metal-free N,N′-phenylenebis(salicylideneimine) (salphen) network (H-MSN) can be engineered by Sonogashira coupling of [tetraiodo{di(Zn-salphen)}] building blocks with 1,4-diethynylbenzene in the presence of silica templates and by successive Zn and silica etching. Iron(III) ions could be incorporated into the H-MSN to form hollow and microporous Fe–disalphen networks (H-MFeSN) with enhanced microporosity and surface area. The H-MFeSN showed efficient catalytic performance and recyclability in the CO2 conversion to cyclic carbonates.  相似文献   

16.
The first examples of magnesium(I) dimers bearing tripodal ligands, [(Mg{κ3N,N′,O‐(ArNCMe)2(OCCPh2)CH})2] [Ar=2,6‐iPr2C6H3 (Dip) 7 , 2,6‐Et2C6H3 (Dep) 8 , or mesityl (Mes) 9 ] have been prepared by post‐synthetic modification of the β‐diketiminato ligands of previously reported magnesium(I) systems, using diphenylketene, O?C?CPh2. In contrast, related reactions between β‐diketiminato magnesium(I) dimers and the isoelectronic ketenimine, MesN?C?CPh2, resulted in reductive insertion of the substrate into the Mg?Mg bond of the magnesium(I) reactant, and formation of [{(Nacnac)Mg}2{μ‐κ2N,C‐(Mes)NCCPh2}] (Nacnac=[(ArNCMe)2CH]?; Ar=Dep 10 or Mes 11 ). Reactions of the four‐coordinate magnesium(I) dimer 8 with excess CO2 are readily controlled, and cleanly give carbonate [(LMg)2(μ‐κ22‐CO3)] 12 (L=[κ3N,N′,O‐(DepNCMe)2(OCCPh2)CH]?; thermodynamic product), or oxalate [(LMg)2(μ‐κ22‐C2O4)] 13 (kinetic product), depending on the reaction temperature. Compound 12 and CO are formed by reductive disproportionation of CO2, whereas 13 results from reductive coupling of two molecules of the gas. Treatment of 8 with an excess of N2O cleanly gives the μ‐oxo complex [(LMg)2(μ‐O)] 14 , which reacts facilely with CO2 to give 12 . This result presents the possibility that 14 is an intermediate in the formation of 12 from the reaction of 8 and CO2. In contrast to its reactions with CO2, 8 reacts with SO2 over a wide temperature range to give only one product; the first example of a magnesium dithionite complex, [(LMg)2(μ‐κ22‐S2O4)] 16 , which is formed by reductive coupling of two molecules of SO2, and is closely related to f‐block metal dithionite complexes derived from similar SO2 reductive coupling processes. On the whole, this study strengthens previously proposed analogies between the reactivities of magnesium(I) systems and low‐valent f‐block metal complexes, especially with respect to small molecule activations.  相似文献   

17.
Reduction of CO2 by direct one‐electron activation is extraordinarily difficult because of the ?1.9 V reduction potential of CO2. Demonstrated herein is reduction of aqueous CO2 to CO with greater than 90 % product selectivity by direct one‐electron reduction to CO2.? by solvated electrons. Illumination of inexpensive diamond substrates with UV light leads to the emission of electrons directly into water, where they form solvated electrons and induce reduction of CO2 to CO2.?. Studies using diamond were supported by studies using aqueous iodide ion (I?), a chemical source of solvated electrons. Both sources produced CO with high selectivity and minimal formation of H2. The ability to initiate reduction reactions by emitting electrons directly into solution without surface adsorption enables new pathways which are not accessible using conventional electrochemical or photochemical processes.  相似文献   

18.
Reducing frustration: The reaction of Mes(3) P(CO(2) )(AlI(3) )(2) in the presence of a CO(2) atmosphere results in the formation of Mes(3) P(CO(2) )(O(AlI(2) )(2) )(AlI(3) ) and [Mes(3) PI][AlI(4) ] (Mes=2,4,6-Me(3) C(6) H(2) ) with the evolution of CO.  相似文献   

19.
Carbon dioxide (CO2) utilization as a carbonyl source is an attractive and promising approach to yielding value-added organic urea derivatives, which are currently produced with toxic reagents such as phosgene and carbon monoxide, along with the contribution to mitigating global warming. However, the direct intermolecular reaction between CO2 and amines into organic urea derivatives has thermodynamic limitations, and such obstacles need to be considered well in order to establish efficient reaction systems. Herein, this review describes the thermodynamic aspects for producing several organic urea compounds, viz., N,N’-dibutylurea, N,N’-di(tert-butyl)urea, 2-imidazolidinone (ethylene urea), N,N’-dimethyl-2-imidazolidinone, tetrahydro-2-pyrimidinone (propylene urea), and N,N’-diphenylurea, based on the results of computational calculations. Besides, a variety of the state-of-the-art reaction systems with/without catalyst for synthesizing such organic urea compounds operated under pressurized CO2 have been summarized and discussed to make not only advantages but also disadvantages clear. We have also overviewed the very recently reported approaches that employ alkylcarbamic acids as substrates and instead does not require external CO2. The thermodynamic and catalytic insights garnered here could be a fruitful guideline for fairly assessing each reaction system and further improving the efficiency of CO2 utilization as a carbonyl source.  相似文献   

20.
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro‐/photo‐)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ‐MePyr)2Fe(NO)2]2? ( 2 , MePyr=3‐methylpyrazolate) results in the formation of CO2‐captured complex [(NO)2Fe(MePyrCO2)]? ( 2‐CO2 , MePyrCO2=3‐methyl‐pyrazole‐1‐carboxylate). Single‐crystal structure, spectroscopic, reactivity, and computational study unravels 2‐CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2‐CO2 → [(NO)2Fe(μ‐MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2‐CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号